1
|
Manrique M, Mondragón IF, Flórez-Valencia L, Montoya L, García A, Mera CA, Kuhlmann A, Guillén F, Cortés M, Gutiérrez Gómez ML. Haptic experience to significantly motivate anatomy learning in medical students. BMC MEDICAL EDUCATION 2024; 24:946. [PMID: 39215247 PMCID: PMC11363654 DOI: 10.1186/s12909-024-05829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Currently, multiple tools exist to teach and learn anatomy, but finding an adequate activity is challenging. However, it can be achieved through haptic experiences, where motivation is the means of a significant learning process. This study aimed to evaluate a haptic experience to determine if a tactile and painting with color marker interactive experience, established a better learning process in comparison to the traditional 2D workshop on printed paper with photographs. METHODS Plaster bone models of the scapulae, humerus and clavicle were elaborated from a computerized scan tomography. Second year undergraduate medical students were invited to participate, where subjects were randomly assigned to the traditional 2D method or the 3D plaster bone model. A third group decided not to join any workshop. Following, all three groups were evaluated on bone landmarks and view, laterality, muscle insertions and functions. 2D and 3D workshop students were asked their opinion in a focus group and answered a survey regarding the overall perception and learning experience. Evaluation grades are presented as mean ± standard deviation, and answers from the survey are presented as percentages. RESULTS The survey demonstrated the students in the 3D model graded the experience as outstanding, and in five out of the six questions, answers were very good or excellent. In contrast, for students participating in the 2D workshop the most common answers were fair or good. The exception was the answer regarding the quiz, where both groups considered it good, despite the average among all groups not being a passing grade. CONCLUSIONS To learn the anatomy of the shoulder, the conventional methodology was compared with a haptic experience, where plaster bone models were used, enabling students to touch and paint on them. Based on the focus group and survey this study revealed the 3D workshop was an interactive experience where, the sense of touch and painting greatly contributed to their learning process. Even though this activity was useful in terms of learning bone landmarks, view muscle insertions, and establish relations, further activities must be developed to increase their understanding regarding their function, and its relevance in a clinical setting.
Collapse
Affiliation(s)
- Martha Manrique
- Industrial Engineering Department, School of Engineering, Pontificia Universidad Javeriana Bogotá, Bogotá, Colombia
| | - Iván F Mondragón
- Department of Industrial Engineering, School of Engineering, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Leonardo Flórez-Valencia
- Department of Systems Engineering, School of Engineering, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luisa Montoya
- Department of Clinical Epidemiology and Biostatistics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ananías García
- Department of Morphological Sciences, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carmen Alicia Mera
- Department of Morphological Sciences, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Angelika Kuhlmann
- Department of Morphological Sciences, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fabricio Guillén
- Department of Morphological Sciences, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Michelle Cortés
- Department of Morphological Sciences, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - María Lucía Gutiérrez Gómez
- Department of Morphological Sciences, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia.
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
2
|
Horne CA, Hepworth D, Saunders E, Keenan ID. Everyone can draw: An inclusive and transformative activity for conceptualization of topographic anatomy. ANATOMICAL SCIENCES EDUCATION 2024; 17:1080-1096. [PMID: 38825620 DOI: 10.1002/ase.2460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/18/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024]
Abstract
Anatomical drawing traditionally involves illustration of labeled diagrams on two-dimensional surfaces to represent topographical features. Despite the visual nature of anatomy, many learners perceive that they lack drawing skills and do not engage in art-based learning. Recent advances in the capabilities of technology-enhanced learning have enabled the rapid and inexpensive production of three-dimensional anatomical models. This work describes a "drawing on model" activity in which learners observe and draw specific structures onto three-dimensional models. Sport and exercise sciences (SES, n = 79) and medical (MED, n = 156) students at a United Kingdom medical school completed this activity using heart and femur models, respectively. Learner demographics, their perceptions of anatomy learning approaches, the value of the activity, and their confidence in understanding anatomical features, were obtained via validated questionnaire. Responses to 7-point Likert-type and free-text items were analyzed by descriptive statistics and semi-quantitative content analysis. Learners valued art-based study (SES mean = 5.94 SD ±0.98; MED = 5.92 ± 1.05) and the "drawing on model" activity (SES = 6.33 ± 0.93; MED = 6.21 ± 0.94) and reported enhanced confidence in understanding of cardiac anatomy (5.61 ± 1.11), coronary arteries (6.03 ± 0.83), femur osteology (6.07 ± 1.07), and hip joint muscle actions (5.80 ± 1.20). Perceptions of learners were independent of both their sex and their art-based study preferences (p < 0.05). Themes constructed from free-text responses identified "interactivity," "topography," "transformative," and "visualization," as key elements of the approach, in addition to revealing some limitations. This work will have implications for anatomy educators seeking to engage learners in an inclusive, interactive, and effective learning activity for supporting three-dimensional anatomical understanding.
Collapse
Affiliation(s)
- Carly A Horne
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - David Hepworth
- School of Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Emma Saunders
- School of Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Iain D Keenan
- School of Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Neri I, Cercenelli L, Marcuccio M, Lodi S, Koufi FD, Fazio A, Marvi MV, Marcelli E, Billi AM, Ruggeri A, Tarsitano A, Manzoli L, Badiali G, Ratti S. Dissecting human anatomy learning process through anatomical education with augmented reality: AEducAR 2.0, an updated interdisciplinary study. ANATOMICAL SCIENCES EDUCATION 2024; 17:693-711. [PMID: 38520153 DOI: 10.1002/ase.2389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 03/25/2024]
Abstract
Anatomical education is pivotal for medical students, and innovative technologies like augmented reality (AR) are transforming the field. This study aimed to enhance the interactive features of the AEducAR prototype, an AR tool developed by the University of Bologna, and explore its impact on human anatomy learning process in 130 second-year medical students at the International School of Medicine and Surgery of the University of Bologna. An interdisciplinary team of anatomists, maxillofacial surgeons, biomedical engineers, and educational scientists collaborated to ensure a comprehensive understanding of the study's objectives. Students used the updated version of AEducAR, named AEducAR 2.0, to study three anatomical topics, specifically the orbit zone, facial bones, and mimic muscles. AEducAR 2.0 offered two learning activities: one explorative and one interactive. Following each activity, students took a test to assess learning outcomes. Students also completed an anonymous questionnaire to provide background information and offer their perceptions of the activity. Additionally, 10 students participated in interviews for further insights. The results demonstrated that AEducAR 2.0 effectively facilitated learning and students' engagement. Students totalized high scores in both quizzes and declared to have appreciated the interactive features that were implemented. Moreover, interviews shed light on the interesting topic of blended learning. In particular, the present study suggests that incorporating AR into medical education alongside traditional methods might prove advantageous for students' academic and future professional endeavors. In this light, this study contributes to the growing research emphasizing the potential role of AR in shaping the future of medical education.
Collapse
Affiliation(s)
- Irene Neri
- Cellular Signalling Laboratory, Anatomy Center, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Laura Cercenelli
- eDIMES Lab-Laboratory of Bioengineering, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Massimo Marcuccio
- Department of Educational Science "Giovanni Maria Bertin", University of Bologna, Bologna, Italy
| | - Simone Lodi
- Cellular Signalling Laboratory, Anatomy Center, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Foteini-Dionysia Koufi
- Cellular Signalling Laboratory, Anatomy Center, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Antonietta Fazio
- Cellular Signalling Laboratory, Anatomy Center, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Maria Vittoria Marvi
- Cellular Signalling Laboratory, Anatomy Center, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Emanuela Marcelli
- eDIMES Lab-Laboratory of Bioengineering, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Anna Maria Billi
- Cellular Signalling Laboratory, Anatomy Center, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Alessandra Ruggeri
- Cellular Signalling Laboratory, Anatomy Center, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Achille Tarsitano
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Department of Maxillo-Facial Surgery, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Anatomy Center, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giovanni Badiali
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Department of Maxillo-Facial Surgery, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Anatomy Center, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Langlois J, Hamstra SJ, Dagenais Y, Lemieux R, Lecourtois M, Yetisir E, Bellemare C, Bergeron G, Wells GA. Objects drawn from haptic perception and vision-based spatial abilities. ANATOMICAL SCIENCES EDUCATION 2024; 17:433-443. [PMID: 38108595 DOI: 10.1002/ase.2366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Haptic perception is used in the anatomy laboratory with the handling of three-dimensional (3D) prosections, dissections, and synthetic models of anatomical structures. Vision-based spatial ability has been found to correlate with performance on tests of 3D anatomy knowledge in previous studies. The objective was to explore whether haptic-based spatial ability was correlated with vision-based spatial ability. Vision-based spatial ability was measured in a study group of 49 medical graduates with three separate tests: a redrawn Vandenberg and Kuse Mental Rotations Tests in two (MRT A) and three (MRT C) dimensions and a Surface Development Test (SDT). Haptic-based spatial ability was measured using 18 different objects constructed from 10 cubes glued together. Participants were asked to draw these objects from blind haptic perception, and drawings were scored by two independent judges. The maximum score was 24 for each of MRT A and MRT C, 60 for SDT, and 18 for the drawings. The drawing score based on haptic perception [median = 17 (lower quartile = 16, upper quartile = 18)] correlated with MRT A [14 (9, 17)], MRT C [9 (7, 12)] and SDT [44 (36, 52)] scores with a Spearman's rank correlation coefficient of 0.395 (p = 0.0049), 0.507 (p = 0.0002) and 0.606 (p < 0.0001), respectively. Spatial abilities assessed by vision-based tests were correlated with a drawing score based on haptic perception of objects. Future research should investigate the contribution of haptic-based and vision-based spatial abilities on learning 3D anatomy from physical models.
Collapse
Affiliation(s)
- Jean Langlois
- Department of Emergency Medicine, CIUSSS de l'Estrie-Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Department of Surgery, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stanley J Hamstra
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Holland Bone and Joint Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Yvan Dagenais
- Department of Surgery, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Department of Letters and Communications, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Renald Lemieux
- Health Data Strategy, CIUSSS de l'Estrie-Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marc Lecourtois
- Mental Health Programme, CIUSSS de l'Estrie-Centre hospitalier universitaire de Sherbrooke, Granby, Quebec, Canada
| | - Elizabeth Yetisir
- Cardiovascular Research Methods Centre, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Christian Bellemare
- Department of Multidisciplinary Services, Clinical Quality Division, CIUSSS de l'Estrie-Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Germain Bergeron
- Neuropsychology Program of the Trauma and Critical Care Group, CIUSSS de l'Estrie-Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - George A Wells
- Cardiovascular Research Methods Centre, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Bilella A, Eppler E, Link K, Filgueira L. Body painting, ultrasound, clinical examination, and peer-teaching: A student-centered approach to enhance musculoskeletal anatomy learning. ANATOMICAL SCIENCES EDUCATION 2024; 17:157-172. [PMID: 37670412 DOI: 10.1002/ase.2334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 07/12/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
The presented course, established 2016 as a compulsory elective for 22nd-year bachelor medical students, aimed to enhance deep learning of upper and lower limb anatomy from a clinical perspective by a maximum of student-centered activities combining hands-on skills training with team-learning. Three cohorts (in total 60 students) participated in this study. Students rotated through body painting, ultrasound, and clinical investigation supervised by faculty or an experienced clinician. Teams of 3-4 students prepared presentations on clinical anatomy and pathological conditions, which by teacher- and peer assessments on average achieved >85% (mean 17.8/20 points ± 1.06). After each activity session, the students reported their learning experience through a reflective diary. Fifty students (83%) evaluated the course by a voluntary anonymous questionnaire combining Likert-type scale and free-text questions to assess, predominantly, perception of course activities and their perceived influence on learning anatomy. Journal reports and questionnaires revealed that the students highly valued the course, and 92% (29 females, 17 males) rated group work satisfying or well-perceived. The highest appreciation achieved ultrasound followed by clinical examination and body painting, which one third proposed to integrate into the regular dissection course. All students recommended the course to their younger peers. This course was feasible to integrate in the pre-existing curriculum. Limiting factors to offer this elective course to more students are availability of clinical teachers, technical equipment, and education rooms. Being student-directed tasks, body painting and reflective diary-writing would be feasible to implement without additional faculty, which we recommend to educators for student engagement activation.
Collapse
Affiliation(s)
- Alessandro Bilella
- Anatomy, University of Fribourg, Fribourg, Switzerland
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | - Karl Link
- Anatomy, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|