1
|
Hu C, Kuhn L, Makurvet FD, Knorr ES, Lin X, Kawade RK, Mentink-Vigier F, Hanson K, Alabugin IV. Tethering Three Radical Cascades for Controlled Termination of Radical Alkyne peri-Annulations: Making Phenalenyl Ketones without Oxidants. J Am Chem Soc 2024; 146:4187-4211. [PMID: 38316011 DOI: 10.1021/jacs.3c13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Although Bu3Sn-mediated radical alkyne peri-annulations allow access to phenalenyl ring systems, the oxidative termination of these cascades provides only a limited selection of the possible isomeric phenalenone products with product selectivity controlled by the intrinsic properties of the new cyclic systems. In this work, we report an oxidant-free termination strategy that can overcome this limitation and enable selective access to the full set of isomerically functionalized phenalenones. The key to preferential termination is the preinstallation of a "weak link" that undergoes C-O fragmentation in the final cascade step. Breaking a C-O bond is assisted by entropy, gain of conjugation in the product, and release of stabilized radical fragments. This strategy is expanded to radical exo-dig cyclization cascades of oligoalkynes, which provide access to isomeric π-extended phenalenones. Conveniently, these cascades introduce functionalities (i.e., Bu3Sn and iodide moieties) amenable to further cross-coupling reactions. Consequently, a variety of polyaromatic diones, which could serve as phenalenyl-based open-shell precursors, can be synthesized.
Collapse
Affiliation(s)
- Chaowei Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Favour D Makurvet
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Erica S Knorr
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Rahul K Kawade
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
2
|
Dong X, Sun Q, Feng Z, Ruan H, Tang S, Liu M, Zhao Y, Su Y, Wang X. Room‐Temperature
Reversible
σ‐Dimerization
of a Phenalenyl Radical. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xue Dong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Quanchun Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Min Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| |
Collapse
|
3
|
Harimoto T, Ishigaki Y. Redox‐Active Hydrocarbons: Isolation and Structural Determination of Cationic States toward Advanced Response Systems. Chempluschem 2022; 87:e202200013. [DOI: 10.1002/cplu.202200013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Harimoto
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science JAPAN
| | - Yusuke Ishigaki
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science North 10, West 8, North-ward 060-0810 Sapporo JAPAN
| |
Collapse
|
4
|
Hirao Y, Daifuku Y, Ihara K, Kubo T. Spin–Spin Interactions in One‐Dimensional Assemblies of a Cumulene‐Based Singlet Biradical. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yasukazu Hirao
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yoko Daifuku
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Keiji Ihara
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Takashi Kubo
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
5
|
Hirao Y, Daifuku Y, Ihara K, Kubo T. Spin-Spin Interactions in One-Dimensional Assemblies of a Cumulene-Based Singlet Biradical. Angew Chem Int Ed Engl 2021; 60:21319-21326. [PMID: 34101316 DOI: 10.1002/anie.202105740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/09/2022]
Abstract
The synthesis of phenalenyl-endcapped [5]cumulene as a cumulene-based singlet biradical and the spin correlation changes of one-dimensional aggregates are described. The high propensity for self-aggregation of phenalenyl rings and the introduction of bulky substituents into the appropriate positions led to the formation of a one-dimensional chain assembly. Single-crystal X-ray structural analysis indicated that the bond length alternation of the cumulene chain increased with decreasing temperature, along with improved overlapping of the phenalenyl rings. Variable-temperature Raman spectroscopy and magnetic susceptibility measurements revealed that a localized spin pair within the molecule decouples at low temperatures, and a continuum spin system involving intra- and intermolecular spin-spin interactions emerges in the one-dimensional chain.
Collapse
Affiliation(s)
- Yasukazu Hirao
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoko Daifuku
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Keiji Ihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
6
|
Khamatgalimov AR, Kovalenko VI. Substructural Approach for Assessing the Stability of Higher Fullerenes. Int J Mol Sci 2021; 22:3760. [PMID: 33916647 PMCID: PMC8038623 DOI: 10.3390/ijms22073760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
This review describes the most significant published results devoted to the study of the nature of the higher fullerenes stability, revealing of correlations between the structural features of higher fullerene molecules and the possibility of their producing. A formalization of the substructure approach to assessing the stability of higher fullerenes is proposed, which is based on a detailed analysis of the main structural features of fullerene molecules. The developed substructure approach, together with the stability of the substructures constituting the fullerene molecule, helps to understand deeper the features of the electronic structure of fullerenes.
Collapse
Affiliation(s)
- Ayrat R. Khamatgalimov
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia;
| | - Valeri I. Kovalenko
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia;
- Department of Environmental Engineering, Kazan National Research Technological University, 420015 Kazan, Russia
| |
Collapse
|
7
|
Mutoh K, Nakagawa Y, Hatano S, Kobayashi Y, Abe J. Entropy-controlled biradical–quinoid isomerization of a π-conjugated delocalized biradical. Phys Chem Chem Phys 2015; 17:1151-5. [DOI: 10.1039/c4cp04606d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The valence isomerization from the photogenerated biradical to the quinoid species is observed for the photochromic dimer of imidazolyl radicals.
Collapse
Affiliation(s)
- Katsuya Mutoh
- Department of Chemistry
- School of Science and Engineering
- Aoyama Gakuin University
- Sagamihara
- Japan
| | | | - Sayaka Hatano
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Yoichi Kobayashi
- Department of Chemistry
- School of Science and Engineering
- Aoyama Gakuin University
- Sagamihara
- Japan
| | - Jiro Abe
- Department of Chemistry
- School of Science and Engineering
- Aoyama Gakuin University
- Sagamihara
- Japan
| |
Collapse
|
8
|
Sun Z, Ye Q, Chi C, Wu J. Low band gap polycyclic hydrocarbons: from closed-shell near infrared dyes and semiconductors to open-shell radicals. Chem Soc Rev 2012; 41:7857-89. [DOI: 10.1039/c2cs35211g] [Citation(s) in RCA: 512] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Suzuki S, Fukui K, Fuyuhiro A, Sato K, Takui T, Nakasuji K, Morita Y. Hexaazaphenalene Derivatives: One-Pot Synthesis, Hydrogen-Bonded Chiral Helix, and Fluorescence Properties. Org Lett 2010; 12:5036-9. [DOI: 10.1021/ol102200v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shuichi Suzuki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Kubo T, Shimizu A, Nakano M, Nakasuji K. Chemistry of Phenalenyl-based Delocalized Singlet Biradicals. J SYN ORG CHEM JPN 2010. [DOI: 10.5059/yukigoseikyokaishi.68.64] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Shimizu A, Uruichi M, Yakushi K, Matsuzaki H, Okamoto H, Nakano M, Hirao Y, Matsumoto K, Kurata H, Kubo T. Resonance Balance Shift in Stacks of Delocalized Singlet Biradicals. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200901382] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Shimizu A, Uruichi M, Yakushi K, Matsuzaki H, Okamoto H, Nakano M, Hirao Y, Matsumoto K, Kurata H, Kubo T. Resonance Balance Shift in Stacks of Delocalized Singlet Biradicals. Angew Chem Int Ed Engl 2009; 48:5482-6. [DOI: 10.1002/anie.200901382] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|