1
|
Fukaya N, Ogi S, Sotome H, Fujimoto KJ, Yanai T, Bäumer N, Fernández G, Miyasaka H, Yamaguchi S. Impact of Hydrophobic/Hydrophilic Balance on Aggregation Pathways, Morphologies, and Excited-State Dynamics of Amphiphilic Diketopyrrolopyrrole Dyes in Aqueous Media. J Am Chem Soc 2022; 144:22479-22492. [PMID: 36459436 DOI: 10.1021/jacs.2c07299] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We report the thermodynamic and kinetic aqueous self-assembly of a series of amide-functionalized dithienyldiketopyrrolopyrroles (TDPPs) that bear various hydrophilic oligoethylene glycol (OEG) and hydrophobic alkyl chains. Spectroscopic and microscopic studies showed that the TDPP-based amphiphiles with an octyl group form sheet-like aggregates with J-type exciton coupling. The effect of the alkyl chains on the aggregated structure and the internal molecular orientation was examined via computational studies combining MD simulations and TD-DFT calculations. Furthermore, solvent and thermal denaturation experiments provided a state diagram that indicates the formation of unexpected nanoparticles during the self-assembly into nanosheets when longer OEG side chains are introduced. A kinetic analysis revealed that the nanoparticles were obtained selectively as an on-pathway intermediate state toward the formation of thermodynamically controlled nanosheets. The metastable aggregates were used for seed-initiated supramolecular assembly, which allowed establishing control over the assembly kinetics and the aggregate size. The sheet-like aggregates prepared using the seeding method exhibited coherent vibration in the excited state, indicating a well-ordered orientation of the TDPP units. These results underline the significance of fine tuning of the hydrophobic/hydrophilic balance in the molecular design to kinetically control the assembly of amphiphilic π-conjugated molecules into two-dimensional nanostructures in aqueous media.
Collapse
Affiliation(s)
- Natsumi Fukaya
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan
| | - Soichiro Ogi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan.,Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka560-8531, Japan
| | - Kazuhiro J Fujimoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan.,Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan.,Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan
| | - Nils Bäumer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka560-8531, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan.,Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan
| |
Collapse
|
2
|
Tashiro K, Saito T, Arima H, Suda N, Vedhanarayanan B, Yagai S. Scissor-Shaped Photochromic Dyads: Hierarchical Self-Assembly and Photoresponsive Property. CHEM REC 2021; 22:e202100252. [PMID: 34669237 DOI: 10.1002/tcr.202100252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/06/2022]
Abstract
Unique relationships between hierarchically organized biological nanostructures and functions have motivated chemists to construct sophisticated artificial nanostructured systems from small and simple synthetic molecules through self-assembly. As one of such sophisticated systems, we have investigated scissor-shaped photochromic dyads that can hierarchically self-assemble into discrete nanostructures showing photoresponsive properties. We synthesized various azobenzene dyads and found that these dyads adopt intramolecularly folded conformation like a closed scissor, and then self-assemble into toroidal nanostructures by generating curvature. The toroids further organize into nanotubes and further into helical supramolecular fibers depending on the nature of alkyl substituents. All of these nanostructures can be dissociated and reorganized through the photoisomerization of azobenzene units. On the other hand, the introduction of stilbene chromophores instead of azobenzenes leads to one-dimensional supramolecular polymerization, which upon the intramolecular photocyclization of stilbene chromophores shifts to curved self-assembly leading to helicoidal fibers with distinct supramolecular chirality.
Collapse
Affiliation(s)
- Keigo Tashiro
- Institute for Global Prominent Research (IGPR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Takuho Saito
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Hironari Arima
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Natsuki Suda
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Balaraman Vedhanarayanan
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Shiki Yagai
- Institute for Global Prominent Research (IGPR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.,Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
3
|
Affiliation(s)
- Shinji Yamada
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
4
|
Ewonkem MB, Grinberg S. Maleimide-acetylcholine headed bolaamphiphilic vesicles made from ricinoleic acid: Prospective active targeted drug delivery systems. Chem Phys Lipids 2018; 212:96-110. [PMID: 29408046 DOI: 10.1016/j.chemphyslip.2018.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/20/2018] [Accepted: 01/21/2018] [Indexed: 11/27/2022]
Abstract
Based on ricinoleic acid, two asymmetric bolaamphiphiles with unsymmetrical hydrophobic skeletons and two different hydrophilic head groups were designed and synthesized. The first bola compound had acetylcholine (ACh) and maleimide (MAL) head groups while the second was derived from the first bolaamphiphile by thiol-ene conjugation of its maleimide moiety with l-glutathione and possessed ACh and l-glutathione-MAL head groups. Both synthetic bolaamphiphiles were characterized by common spectroscopic methods. The asymmetric bola compound with ACh and MAL head groups was investigated for its ability to self-aggregate into nanoparticles and showed to form in aqueous media nano-sized vesicles that were stable, positively charged and had symmetrical monolayer membrane with antiparallel packing. These vesicles prepared with or without membrane stabilizers such as cholesterol (CHOL) and cholesteryl hemisuccinate (CHEMS) were able to encapsulate carboxyfluorescein (CF), a water soluble and self-quenching marker and particularly those without additives were more CF encapsulating. The synthesis of bolaamphiphile with ACh-l-glutathione-MAL head groups gives evidence that the bola with ACh and MAL head groups can be utilized as a precursor of a plethora of asymmetric bolas.
Collapse
Affiliation(s)
- Monique B Ewonkem
- Department of Chemistry, Ben-Gurion University, Be'er Sheva 84105, Israel; Department of Chemistry, University of Douala, PO Box 2701, Douala, Cameroon.
| | - Sarina Grinberg
- Department of Chemistry, Ben-Gurion University, Be'er Sheva 84105, Israel
| |
Collapse
|
5
|
Wei P, Zhang JX, Zhao Z, Chen Y, He X, Chen M, Gong J, Sung HHY, Williams ID, Lam JWY, Tang BZ. Multiple yet Controllable Photoswitching in a Single AIEgen System. J Am Chem Soc 2018; 140:1966-1975. [PMID: 29332386 DOI: 10.1021/jacs.7b13364] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Seeking new methods to obtain elaborate artificial on-demand photoswitching with multiple functionalities remains challenging. Most of the systems reported so far possess only one specific function and their nonemissive nature in the aggregated state inevitably limit their applications. Herein, a tailored cyanostilbene-based molecule with aggregation-induced emission characteristic was synthesized and was found to exhibit efficient, multiple and controllable photoresponsive behaviors under different conditions. Specifically, three different reactions were involved: (i) reversible Z/E isomerization under room light and thermal treatment in CH3CN, (ii) UV-induced photocyclization with a concomitant dramatic fluorescence enhancement, and (iii) regio- and stereoselective photodimerization in aqueous medium with microcrystal formation. Experimental and theoretical analyses gave visible insights and detailed mechanisms of the photoreaction processes. Fluorescent 2D photopattern with enhanced signal-to-background ratio was fabricated based on the controllable "turn-on" and "turn-off" photobehaviors in different states. The present study thus paves an easy yet efficient way to construct smart multiphotochromes for unique applications.
Collapse
Affiliation(s)
- Peifa Wei
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Jing-Xuan Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Zheng Zhao
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuncong Chen
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Xuewen He
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Ming Chen
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Junyi Gong
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Herman H-Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China.,NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
| |
Collapse
|
6
|
Das A, Ghosh S. H-bonding directed programmed supramolecular assembly of naphthalene-diimide (NDI) derivatives. Chem Commun (Camb) 2016; 52:6860-72. [PMID: 27100059 DOI: 10.1039/c6cc01983h] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review we have collated various supramolecular designs, all surrounding H-bonding among well-known functional groups (peptides, nucleic acids, amides, ureas, carboxylic acids, pyridine-hydroxyls, urethanes, imides and others), to dictate self-assembly of naphthalenediimide (NDI) π-systems (both small molecules and polymeric building blocks) that exhibit several exciting features including strong propensity for π-π interactions, π-acidity, excellent n-type semiconductivity, CT-complexation, ion-π interactions, ring-substitution dependent redox properties and photophysical properties. This article reveals that H-bonding can indeed serve as a very powerful and versatile tool to programmed self-assembly of a single or multiple dye system producing a wide range of tailored soft materials, including fibrillar gels, chromonic mesophases, foldamers, nanotubes, vesicles, reverse micelles and polymersomes, both in water and organic medium with distinct photophysical properties, charge transport properties, conductivity properties and functional group displays that are highly relevant in the fields of biology and organic electronics.
Collapse
Affiliation(s)
- Anindita Das
- Indian Association for the Cultivation of Science, Polymer Science Unit, 2A and 2B Raja S C Mullick Road, Jadavpur, Kolkata-700032, India.
| | | |
Collapse
|
7
|
Cho MJ, Ahn JS, Kim YU, Um HA, Prasad PN, Lee GJ, Choi DH. New fluorene-based chiral copolymers with unusually high optical activity in pristine and annealed thin films. RSC Adv 2016. [DOI: 10.1039/c5ra26523a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polyfluorene (PF)-based chiral alternating copolymers, i.e., PFPh and PFTh, were successfully synthesized to obtain high circular dichroism (CD) in pristine thin films.
Collapse
Affiliation(s)
- Min Ju Cho
- Department of Chemistry
- Research Institute for Natural Sciences
- Korea University
- Seoul 136-701
- Korea
| | - Jong-Soo Ahn
- Department of Chemistry
- Research Institute for Natural Sciences
- Korea University
- Seoul 136-701
- Korea
| | - Young-Un Kim
- Department of Chemistry
- Research Institute for Natural Sciences
- Korea University
- Seoul 136-701
- Korea
| | - Hyun Ah Um
- Department of Chemistry
- Research Institute for Natural Sciences
- Korea University
- Seoul 136-701
- Korea
| | - Paras N. Prasad
- Institute for Lasers, Photonics and Biophotonics
- Department of Chemistry
- State University of New York at Buffalo
- Buffalo
- USA
| | - Geon Joon Lee
- Department of Electrical and Biological Physics
- Kwangwoon University
- Seoul 139-701
- Korea
| | - Dong Hoon Choi
- Department of Chemistry
- Research Institute for Natural Sciences
- Korea University
- Seoul 136-701
- Korea
| |
Collapse
|
8
|
Photoreactive helical nanoaggregates exhibiting morphology transition on thermal reconstruction. Nat Commun 2015; 6:8936. [PMID: 26586298 PMCID: PMC4673833 DOI: 10.1038/ncomms9936] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/15/2015] [Indexed: 01/24/2023] Open
Abstract
The supramolecular design of photochromic molecules has produced various smart molecular assemblies that can switch their structures and/or functions in response to light stimuli. However, most of these assemblies require large structural changes of the photochromic molecules for an efficient conversion of assembled states, which often suppresses the photoreactivity within the self-assemblies. Here we report molecular assemblies, based on a photo-cross-linkable chromophoric dyad, in which a small amount of ultraviolet-generated photochemical product can guide the entire system into different assembly processes. In apolar solution, the intact dyad self-assembles into right-handed superhelical fibrils. On ultraviolet-irradiation of these fibrils, an effective photoreaction affords a sole photo-cross-linked product. When right-handed helical fibrils, containing a minor amount of the photoproduct, are thermally reconstructed, the intact molecule and the photoproduct undergo a co-assembly process that furnishes superhelical fibrils with different molecular packing structures. This molecular design principle should afford new paradigms for smart molecular assemblies. The ability to switch structure or function in response to an external stimulus is highly desirable for many applications. Here, the authors report the guidable supramolecular assembly of photocross-linkable molecules into different complex superstructures, dependant on their exposure to UV light.
Collapse
|
9
|
Sikder A, Das A, Ghosh S. Hydrogen-Bond-Regulated Distinct Functional-Group Display at the Inner and Outer Wall of Vesicles. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500971] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Sikder A, Das A, Ghosh S. Hydrogen-Bond-Regulated Distinct Functional-Group Display at the Inner and Outer Wall of Vesicles. Angew Chem Int Ed Engl 2015; 54:6755-60. [DOI: 10.1002/anie.201500971] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/13/2015] [Indexed: 12/19/2022]
|
11
|
Molla MR, Ghosh S. Aqueous self-assembly of chromophore-conjugated amphiphiles. Phys Chem Chem Phys 2014; 16:26672-83. [DOI: 10.1039/c4cp03791j] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Jayaramulu K, Krishna KS, George SJ, Eswaramoorthy M, Maji TK. Shape assisted fabrication of fluorescent cages of squarate based metal–organic coordination frameworks. Chem Commun (Camb) 2013; 49:3937-9. [DOI: 10.1039/c3cc39190f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Bhattacharya S, Samanta SK. Unusual Salt-Induced Color Modulation through Aggregation-Induced Emission Switching of a Bis-cationic Phenylenedivinylene-Based π Hydrogelator. Chemistry 2012. [DOI: 10.1002/chem.201201940] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Qian H, Yao W, Yu S, Chen Y, Wu W, Jiang X. Spontaneous Formation of Giant Polymer Vesicles through a Nucleation and Growth Pathway. Chem Asian J 2012; 7:1875-80. [DOI: 10.1002/asia.201200155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Hanqing Qian
- Laboratory of Mesoscopic Chemistry and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, (P. R. China), Fax: (+86) 25‐8331‐7761
| | - Wei Yao
- Laboratory of Mesoscopic Chemistry and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, (P. R. China), Fax: (+86) 25‐8331‐7761
| | - Shuling Yu
- Laboratory of Mesoscopic Chemistry and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, (P. R. China), Fax: (+86) 25‐8331‐7761
| | - Ying Chen
- Laboratory of Mesoscopic Chemistry and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, (P. R. China), Fax: (+86) 25‐8331‐7761
| | - Wei Wu
- Laboratory of Mesoscopic Chemistry and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, (P. R. China), Fax: (+86) 25‐8331‐7761
| | - Xiqun Jiang
- Laboratory of Mesoscopic Chemistry and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, (P. R. China), Fax: (+86) 25‐8331‐7761
| |
Collapse
|
15
|
Matte HSSR, Jain A, George SJ. A covalently linked graphene-oligo(phenylenevinylene) adduct: self-organization and photo-physical properties. RSC Adv 2012. [DOI: 10.1039/c2ra20455j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Jain A, Rao KV, Mogera U, Sagade AA, George SJ. Dynamic Self-Assembly of Charge-Transfer Nanofibers of Tetrathiafulvalene Derivatives with F4TCNQ. Chemistry 2011; 17:12355-61. [DOI: 10.1002/chem.201101813] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/19/2011] [Indexed: 12/24/2022]
|
17
|
Kumar M, George SJ. Spectroscopic Probing of the Dynamic Self-Assembly of an Amphiphilic Naphthalene Diimide Exhibiting Reversible Vapochromism. Chemistry 2011; 17:11102-6. [DOI: 10.1002/chem.201101642] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Indexed: 01/30/2023]
|
18
|
Kumar M, George SJ. Green fluorescent organic nanoparticles by self-assembly induced enhanced emission of a naphthalene diimide bolaamphiphile. NANOSCALE 2011; 3:2130-2133. [PMID: 21445422 DOI: 10.1039/c1nr10151j] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Naphthalene diimide (NDI) bolaamphiphilic molecules (1) self-assemble in water to form organic nanoparticles, which exhibit self-assembly induced preassociated excimer formation and hence an enhanced green fluorescence.
Collapse
Affiliation(s)
- Mohit Kumar
- Supramolecular Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India 560064
| | | |
Collapse
|
19
|
Ruiz-Carretero A, Janssen PGA, Kaeser A, Schenning APHJ. DNA-templated assembly of dyes and extended π-conjugated systems. Chem Commun (Camb) 2011; 47:4340-7. [DOI: 10.1039/c0cc05155a] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Rao KV, George SJ. Synthesis and Controllable Self-Assembly of a Novel Coronene Bisimide Amphiphile. Org Lett 2010; 12:2656-9. [DOI: 10.1021/ol100864e] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- K. Venkata Rao
- Supramolecular Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore-560064, India
| | - Subi J. George
- Supramolecular Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore-560064, India
| |
Collapse
|