1
|
Zhang S, Cheng L, Chen C, Li J, Li X, Zhang M, Cheng F, Xiao X, Deng K, Zeng Q. Controlled Construction of an Exquisite Three-Component Co-assembly Supramolecular Structure at the Liquid-Solid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2153-2160. [PMID: 33527825 DOI: 10.1021/acs.langmuir.0c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A three-component supramolecular co-assembly structure formed at the liquid-solid interface by employing a shape-persistent π-conjugated macrocycle (16mer) and two guest molecules (COR and C60) is demonstrated. Scanning tunneling microscopy (STM) observations revealed that 16mer can serve as a versatile host molecule that can co-assemble with both COR and C60 guest molecules to form stable two-component structures, where the COR guest molecule filled in the gap between the side chains of adjacent 16mer molecules, and the C60 guest molecule entered the inner cavity of 16mer. It was found that the adding sequence of COR and C60 guest molecules is crucial to the resulting co-adsorption structure in the three-component system. To obtain the intriguing 16mer-COR-C60 three-component co-assembly structure, the 16mer and COR two-component co-assembly structure should first be constructed on a HOPG surface, followed by addition of C60. Based on the analysis of the STM results and the density functional theory (DFT) calculations, the formation mechanism of the assembled structures was revealed.
Collapse
Affiliation(s)
- Siqi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Linxiu Cheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Chen Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Jianqiao Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Xiaokang Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Xunwen Xiao
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, P. R. China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
- Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Zhang SQ, Cheng LX, Gong ZL, Duan WB, Tu B, Zhong YW, Zeng QD. Temperature-Triggered Self-Assembled Structural Transformation: From Pure Hydrogen-Bonding Quadrilateral Nanonetwork to Trihexagonal Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6571-6577. [PMID: 31002519 DOI: 10.1021/acs.langmuir.9b00666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Adequate control over the structures of molecular building blocks plays an important role in the fabrication of desired supramolecular nanostructures at interfaces. In this study, the formation of a pure hydrogen-bonding co-assembly supramolecular nanonetwork on a highly oriented pyrolytic graphite surface was demonstrated by means of a scanning tunneling microscope. The thermal annealing process was conducted to monitor the temperature-triggered structural transformation of the self-assembled nanonetwork. On the basis of the single-molecule-level resolution scanning tunneling microscopy images, together with the density functional theory calculations, the formation mechanisms of the formed nanoarrays were proposed. The results have great significance with regard to controlled construction of complex nanostructures on the surface.
Collapse
Affiliation(s)
- Si-Qi Zhang
- Department of Chemistry, School of Science , Beijing Jiaotong University , Beijing 100044 , P. R. China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P. R. China
| | - Lin-Xiu Cheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P. R. China
- Center of Materials Science and Optoelectonics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Wu-Biao Duan
- Department of Chemistry, School of Science , Beijing Jiaotong University , Beijing 100044 , P. R. China
| | - Bin Tu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P. R. China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Qing-Dao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P. R. China
- Center of Materials Science and Optoelectonics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
3
|
Tobe Y, Tahara K, De Feyter S. Adaptive Building Blocks Consisting of Rigid Triangular Core and Flexible Alkoxy Chains for Self-Assembly at Liquid/Solid Interfaces. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160214] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Tahara K, Nakatani K, Iritani K, De Feyter S, Tobe Y. Periodic Functionalization of Surface-Confined Pores in a Two-Dimensional Porous Network Using a Tailored Molecular Building Block. ACS NANO 2016; 10:2113-2120. [PMID: 26838957 DOI: 10.1021/acsnano.5b06483] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present here the periodic functionalization of a two-dimensional (2D) porous molecular network using a tailored molecular building block. For this purpose, a dehydrobenzo[12]annulene (DBA) derivative, 1-isoDBA, having an isophthalic acid unit connected by an azobenzene linker to a C12 alkyl chain and five C14 chains, was designed and synthesized. After the optimization of monolayer preparation conditions at the 1,2,4-trichlorobezene (TCB)/graphite interface, scanning tunneling microscopy (STM) observation of the self-assembled monolayer of 1-isoDBA revealed the formation of extended domains of a porous honeycomb-type molecular network, which consists of periodically located nanowells each functionalized by a cyclic hexamer of hydrogen-bonded isophthalic acid units and those without functional groups. This result demonstrates that the present strategy based on precise molecular design is a viable route to site-specific functionalization of surface-confined nanowells. The nanowells of different size can be used for guest coadsorption of different guests, coronene COR and hexakis[4-(phenylethynyl)phenylethynyl]benzene HPEPEB, whose size and shape match the respective nanowells. STM observation of a ternary mixture (1-isoDBA/COR/HPEPEB) at the TCB/graphite interface revealed the site-selective immobilization of the two different guest molecules at the respective nanowells, producing a highly ordered three-component 2D structure.
Collapse
Affiliation(s)
- Kazukuni Tahara
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
- PRESTO, Japan Science and Technology Agency (JST) , Toyonaka, Osaka 560-8531, Japan
| | - Kenta Nakatani
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| | - Kohei Iritani
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven , Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Yoshito Tobe
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
5
|
Tahara K, Kaneko K, Katayama K, Itano S, Nguyen CH, Amorim DDD, De Feyter S, Tobe Y. Formation of Multicomponent Star Structures at the Liquid/Solid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7032-7040. [PMID: 26061362 DOI: 10.1021/acs.langmuir.5b01507] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To demonstrate key roles of multiple interactions between multiple components and multiple phases in the formation of an uncommon self-assembling pattern, we present here the construction of a porous hexagonal star (h-star) structure using a trigonal molecular building block at the liquid/solid interface. For this purpose, self-assembly of hexaalkoxy-substituted dehydrobenzo[12]annulene derivatives DBA-OCns was investigated at the tetradecane/graphite interface by means of scanning tunneling microscopy (STM). Monolayer structures were significantly influenced by coadsorbed tetradecane molecules depending on the alkyl chains length (C13-C16) of DBA-OCn. However, none of DBA-OCn molecules formed the expected trigonal complexes, indicating that an additional driving force is necessary for the formation of the trigonal complex and its assembly into the h-star structure. As a first approach, we employed the "guest induced structural change" for the formation of the h-star structure. In the presence of two guest molecules, nonsubstituted DBA and hexakis(phenylethynyl)benzene which fit the respective pores, an h-star structure was formed by DBA-OC15 at the tetradecane/graphite interface. Moreover, a tetradecane molecule was coadsorbed between a pair of alkyl chains of DBA-OC15, thereby blocking the interdigitation of the alkyl chain pairs. Therefore, the h-star structure results from the self-assembly of the four molecular components including the solvent molecule. The second approach is based on aggregation of perfluoroalkyl chains via fluorophilicity of DBA-F, in which the perfluoroalkyl groups are substituted at the end of three alkyl chains of DBA-OCn via p-phenylene linkers. A trigonal complex consisting of DBA-F and three tetradecane molecules formed an h-star structure, in which the perfluoroalkyl groups that orient into the alkane solution phase aggregated at the hexagonal pore via fluorophilicity. The present result provides useful insight into the design and control of complex molecular self-assembly at the liquid/solid interface.
Collapse
Affiliation(s)
- Kazukuni Tahara
- †Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kyohei Kaneko
- †Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Keisuke Katayama
- †Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Shintaro Itano
- †Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Chi Huan Nguyen
- †Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Deborah D D Amorim
- †Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Steven De Feyter
- ‡Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Yoshito Tobe
- †Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
6
|
Xue J, Deng K, Liu B, Duan W, Zeng Q, Wang C. Site-selection and adaptive reconstruction in a two-dimensional nanoporous network in response to guest inclusion. RSC Adv 2015. [DOI: 10.1039/c5ra01517k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We coronene (COR) molecule is added into the flexible binary network formed by tetraacidic azobenzene (NN4A) and trans-1,2-bis(4-pyridyl)ethylene (DPE), the binary network breaks and reconstruction structures of NN4A/COR host–guest systems are subsequently formed.
Collapse
Affiliation(s)
- JinDong Xue
- Department of Chemistry
- School of Science
- Beijing Jiaotong University
- Beijing
- China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- National Center for Nanoscience and Technology
- Beijing
- China
| | - Bo Liu
- Department of Chemistry
- School of Science
- Beijing Jiaotong University
- Beijing
- China
| | - WuBiao Duan
- Department of Chemistry
- School of Science
- Beijing Jiaotong University
- Beijing
- China
| | - QingDao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- National Center for Nanoscience and Technology
- Beijing
- China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- National Center for Nanoscience and Technology
- Beijing
- China
| |
Collapse
|
7
|
Wang S, Zhao F, Luo S, Geng Y, Zeng Q, Wang C. Solvent-induced variable conformation of bis(terpyridine) derivatives during supramolecular self-assembly at liquid/HOPG interfaces. Phys Chem Chem Phys 2015; 17:12350-5. [DOI: 10.1039/c5cp00531k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Variable supramolecular structures of bis-(2,2′:6′,2′′-terpyridine)-4′-oxyhexadecane (BT-O-C16) at various liquid–HOPG interfaces were observed by scanning tunneling microscopy (STM).
Collapse
Affiliation(s)
- Shuai Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- China
| | - Fengying Zhao
- Jiangxi College of Applied Technology
- Ganzhou 341000
- China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- China University of Geosciences
| | - Shiwen Luo
- Jiangxi College of Applied Technology
- Ganzhou 341000
- China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- China University of Geosciences
| | - Yanfang Geng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- China
| |
Collapse
|
8
|
Tahara K, Abraham ML, Igawa K, Katayama K, Oppel IM, Tobe Y. Porous molecular networks formed by the self-assembly of positively-charged trigonal building blocks at the liquid/solid interfaces. Chem Commun (Camb) 2014; 50:7683-5. [DOI: 10.1039/c4cc01576b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tris-(2-hydroxybenzylidene)triaminoguanidinium salts having six alkyl chains with proper spacing served as new molecular building blocks for the formation of porous honeycomb networks by van der Waals interaction between interdigitated alkyl chains at the liquid/graphite interfaces.
Collapse
Affiliation(s)
- Kazukuni Tahara
- Division of Frontier Materials Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka, Japan
| | - Maria L. Abraham
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52074 Aachen, Germany
| | - Kosuke Igawa
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka, Japan
| | - Keisuke Katayama
- Division of Frontier Materials Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka, Japan
| | - Iris M. Oppel
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52074 Aachen, Germany
| | - Yoshito Tobe
- Division of Frontier Materials Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka, Japan
| |
Collapse
|
9
|
Zhang X, Zeng Q, Wang C. Host-guest supramolecular chemistry at solid-liquid interface: An important strategy for preparing two-dimensional functional nanostructures. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4975-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Zhang XM, Zeng QD, Wang C. Reversible Phase Transformation at the Solid-Liquid Interface: STM Reveals. Chem Asian J 2013; 8:2330-40. [DOI: 10.1002/asia.201300605] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Indexed: 11/09/2022]
|
11
|
Tahara K, Inukai K, Adisoejoso J, Yamaga H, Balandina T, Blunt MO, De Feyter S, Tobe Y. Tailoring Surface-Confined Nanopores with Photoresponsive Groups. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Tailoring Surface-Confined Nanopores with Photoresponsive Groups. Angew Chem Int Ed Engl 2013; 52:8373-6. [DOI: 10.1002/anie.201303745] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Indexed: 11/07/2022]
|
13
|
Zhang X, Xu H, Shen Y, Wang Y, Shen Z, Zeng Q, Wang C. Solvent dependent supramolecular self-assembly and surface reversal of a modified porphyrin. Phys Chem Chem Phys 2013; 15:12510-5. [DOI: 10.1039/c3cp51586a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Zhang X, Zeng Q, Wang C. Molecular templates and nano-reactors: two-dimensional hydrogen bonded supramolecular networks on solid/liquid interfaces. RSC Adv 2013. [DOI: 10.1039/c3ra40473k] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Ariga K, Ito H, Hill JP, Tsukube H. Molecular recognition: from solution science to nano/materials technology. Chem Soc Rev 2012; 41:5800-35. [PMID: 22773130 DOI: 10.1039/c2cs35162e] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the 25 years since its Nobel Prize in chemistry, supramolecular chemistry based on molecular recognition has been paid much attention in scientific and technological fields. Nanotechnology and the related areas seek breakthrough methods of nanofabrication based on rational organization through assembly of constituent molecules. Advanced biochemistry, medical applications, and environmental and energy technologies also depend on the importance of specific interactions between molecules. In those current fields, molecular recognition is now being re-evaluated. In this review, we re-examine current trends in molecular recognition from the viewpoint of the surrounding media, that is (i) the solution phase for development of basic science and molecular design advances; (ii) at nano/materials interfaces for emerging technologies and applications. The first section of this review includes molecular recognition frontiers, receptor design based on combinatorial approaches, organic capsule receptors, metallo-capsule receptors, helical receptors, dendrimer receptors, and the future design of receptor architectures. The following section summarizes topics related to molecular recognition at interfaces including fundamentals of molecular recognition, sensing and detection, structure formation, molecular machines, molecular recognition involving polymers and related materials, and molecular recognition processes in nanostructured materials.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Go-bancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | | | | | | |
Collapse
|
16
|
Mali KS, Adisoejoso J, De Cat I, Balandina T, Ghijsens E, Guo Z, Li M, Sankara Pillai M, Vanderlinden W, Xu H, De Feyter S. Physisorption for Self-Assembly of Supramolecular Systems: A Scanning Tunneling Microscopy Perspective. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Shen YT, Zhu N, Zhang XM, Deng K, Feng W, Yan Q, Lei S, Zhao D, Zeng QD, Wang C. A Foldamer at the Liquid/Graphite Interface: The Effect of Interfacial Interactions, Solvent, Concentration, and Temperature. Chemistry 2011; 17:7061-8. [DOI: 10.1002/chem.201003589] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Indexed: 11/05/2022]
|
18
|
Shen Y, Zeng L, Lei D, Zhang X, Deng K, Feng Y, Feng W, Lei S, Li S, Gan L, Zeng Q, Wang C. Competitive adsorption and dynamics of guest molecules in 2D molecular sieves. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10260e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Tahara K, Lei S, Adisoejoso J, De Feyter S, Tobe Y. Supramolecular surface-confined architectures created by self-assembly of triangular phenylene-ethynylene macrocycles via van der Waals interaction. Chem Commun (Camb) 2010; 46:8507-25. [PMID: 20967375 DOI: 10.1039/c0cc02780d] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At the liquid/graphite interface triangular and rhombic phenylene-ethynylene macrocycles substituted by alkyl chains self-assemble to form porous two-dimensional (2D) molecular networks of honeycomb and Kagomé types, respectively, or close-packed non-porous structures via alkyl chain interdigitation as the directional intermolecular linkages. Factors that affect the formation of the 2D molecular networks, such as alkyl chain length, solvent, solute concentration, and co-adsorption of guest molecules, were elucidated through a systematic study. For the porous networks, various molecules and molecular clusters were adsorbed in the pores reflecting the size and shape complementarity, exploring a new field of 2D host-guest chemistry.
Collapse
Affiliation(s)
- Kazukuni Tahara
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | | | | | | | | |
Collapse
|