1
|
Budrienė S, Kochanė T, Žurauskaitė N, Balčiūnas E, Rinkūnaitė I, Jonas K, Širmenis R, Bukelskienė V, Baltriukienė D. Synthesis and characterization of UV curable biocompatible hydrophilic copolymers containing siloxane units. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-20. [PMID: 36651136 DOI: 10.1080/09205063.2023.2170141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tissues are highly three-dimensional structure complexes composed of different cell types and their interactions. One of the main challenges in tissue engineering is the inability to produce large, highly perfused scaffolds in which cells can grow at a high cell density and viability. Poly(dimethyl siloxane) (PDMS) is used as a flexible, biocompatible cell culture substrate with tunable mechanical properties. However, its fragility and hydrophobicity still pose a challenge. Here, we present a new strategy for the three-step one-pot synthesis of novel biocompatible hydrophilic copolymers containing siloxane units. In the first step, free radical copolymerization of acrylic acid (AA), butyl methacrylate (BMA), and 2-hydroxyethyl methacrylate (HEMA) was carried out in dioxane (DO) solution in the presence of 2,2'-azodiisobutyronitrile (AIBN). In the second step, the copolymers were modified with diepoxypropoxypropyl-terminated polydimethylsiloxane (DE-PDMS), and in the third step, the copolymers were additionally modified with glycidyl methacrylate (GMA). The modified copolymers were characterized by FTIR, NMR spectroscopy and elemental analysis. Films of modified copolymers were prepared by UV curing. SEM studies revealed microphase separated morphology with distribution of PDMS domains. The mechanical properties of the films depended on the amount of incorporated silicone modifier. The films were more hydrophilic than PDMS films. All novel copolymers showed high biocompatibility.
Collapse
Affiliation(s)
- Saulutė Budrienė
- Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Tatjana Kochanė
- Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Neringa Žurauskaitė
- Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Evaldas Balčiūnas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ieva Rinkūnaitė
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Karolis Jonas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Raimondas Širmenis
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Virginija Bukelskienė
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daiva Baltriukienė
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
|
3
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 607] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Park M, Oh E, Seo J, Kim MH, Cho H, Choi JY, Lee H, Choi IS. Control over Neurite Directionality and Neurite Elongation on Anisotropic Micropillar Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1148-52. [PMID: 26395860 DOI: 10.1002/smll.201501896] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/10/2015] [Indexed: 05/20/2023]
Abstract
Control over neurite orientation in primary hippocampal neurons is achieved by using interrupted, anisotropic micropillar arrays as a cell culture platform. Both neurite orientation and neurite length are controlled by a function of interpillar distance.
Collapse
Affiliation(s)
- Matthew Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 305-701, South Korea
| | - Eunkyul Oh
- Department of Chemistry, College of Natural Science, Hanyang University, Seoul, 133-791, South Korea
| | - Jeongyeon Seo
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 305-701, South Korea
| | - Mi-Hee Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 305-701, South Korea
| | - Hyeoncheol Cho
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 305-701, South Korea
| | - Ji Yu Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 305-701, South Korea
| | - Haiwon Lee
- Department of Chemistry, College of Natural Science, Hanyang University, Seoul, 133-791, South Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 133-791, South Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 305-701, South Korea
| |
Collapse
|
5
|
Joo S, Kang K, Nam Y. In vitroneurite guidance effects induced by polylysine pinstripe micropatterns with polylysine background. J Biomed Mater Res A 2015; 103:2731-9. [DOI: 10.1002/jbm.a.35405] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/19/2014] [Accepted: 01/07/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Sunghoon Joo
- Department of Bio and Brain Engineering; KAIST; Daejeon 305-701 South Korea
| | - Kyungtae Kang
- Center for Cell-Encapsulation Research; KAIST; Daejeon 305-701 South Korea
| | - Yoonkey Nam
- Department of Bio and Brain Engineering; KAIST; Daejeon 305-701 South Korea
| |
Collapse
|
6
|
Hong D, Bae K, Park D, Kim H, Hong SP, Kim MH, Lee BS, Ko S, Jeon S, Zheng X, Yun WS, Kim YG, Choi IS, Lee JK. Direct Patterning and Biofunctionalization of a Large-Area Pristine Graphene Sheet. Chem Asian J 2014; 10:568-71. [DOI: 10.1002/asia.201403219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Indexed: 11/07/2022]
|
7
|
Moustafa ME, Gadepalli VS, Elmak AA, Lee W, Rao RR, Yadavalli VK. Large area micropatterning of cells on polydimethylsiloxane surfaces. J Biol Eng 2014; 8:24. [PMID: 25383093 PMCID: PMC4223844 DOI: 10.1186/1754-1611-8-24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Precise spatial control and patterning of cells is an important area of research with numerous applications in tissue engineering, as well as advancing an understanding of fundamental cellular processes. Poly (dimethyl siloxane) (PDMS) has long been used as a flexible, biocompatible substrate for cell culture with tunable mechanical characteristics. However, fabrication of suitable physico-chemical barriers for cells on PDMS substrates over large areas is still a challenge. RESULTS Here, we present an improved technique which integrates photolithography and cell culture on PDMS substrates wherein the barriers to cell adhesion are formed using the photo-activated graft polymerization of polyethylene glycol diacrylate (PEG-DA). PDMS substrates with varying stiffness were prepared by varying the base to crosslinker ratio from 5:1 to 20:1. All substrates show controlled cell attachment confined to fibronectin coated PDMS microchannels with a resistance to non-specific adhesion provided by the covalently immobilized, hydrophilic PEG-DA. CONCLUSIONS Using photolithography, it is possible to form patterns of high resolution stable at 37°C over 2 weeks, and microstructural complexity over large areas of a few cm(2). As a robust and scalable patterning method, this technique showing homogenous and stable cell adhesion and growth over macroscales can bring microfabrication a step closer to mass production for biomedical applications.
Collapse
Affiliation(s)
- Mahmoud E Moustafa
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Venkat S Gadepalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Ahmed A Elmak
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Woomin Lee
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Raj R Rao
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| |
Collapse
|
8
|
Lee H, Hong D, Jon S, Choi IS. Direct, Noncovalent Coating of a Gold Surface with Polymeric Self-Assembled Monolayers. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.12.3541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Generation of Cellular Micropatterns on a Single-Layered Graphene Film. Macromol Biosci 2013; 14:314-9. [DOI: 10.1002/mabi.201300346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/15/2013] [Indexed: 11/07/2022]
|
10
|
Hong D, Kang K, Hong SP, Shon HK, Son JG, Lee TG, Choi IS. Electrochemical release of amine molecules from carbamate-based, electroactive self-assembled monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:17-21. [PMID: 22132927 DOI: 10.1021/la203420h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this paper, carbamate-based self-assembled monolayers (SAMs) of alkanethiolates on gold were suggested as a versatile platform for release of amine-bearing molecules in response to the electrical signal. The designed SAMs underwent the electrochemical oxidation on the gold surface with simultaneous release of the amine molecules. The synthesis of the thiol compounds was achieved by coupling isocyanate-containing compounds with hydroquinone. The electroactive thiol was mixed with 11-mercaptoundecanol [HS(CH(2))(11)OH] to form a mixed monolayer, and cyclic votammetry was used for the characterization of the release behaviors. The mixed SAMs showed a first oxidation peak at +540 mV (versus Ag/AgCl reference electrode), indicating the irreversible conversion from carbamate to hydroquinone groups with simultaneous release of the amine molecules. The analysis of ToF-SIMS further indicated that the electrochemical reaction on the gold surface successfully released amine molecules.
Collapse
Affiliation(s)
- Daewha Hong
- Molecular-Level Interface Research Center, Department of Chemistry, KAIST, Daejeon 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|