1
|
Acheson K, Kirrander A. Robust Inversion of Time-Resolved Data via Forward-Optimization in a Trajectory Basis. J Chem Theory Comput 2023; 19:2721-2734. [PMID: 37129988 DOI: 10.1021/acs.jctc.2c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
An inversion method for time-resolved data from ultrafast experiments is introduced, based on forward-optimization in a trajectory basis. The method is applied to experimental data from X-ray scattering of the photochemical ring-opening reaction of 1,3-cyclohexadiene and electron diffraction of the photodissociation of CS2. In each case, inversion yields a model that reproduces the experimental data, identifies the main dynamic motifs, and agrees with independent experimental observations. Notably, the method explicitly accounts for continuity constraints and is robust even for noisy data.
Collapse
Affiliation(s)
- Kyle Acheson
- EaStCHEM, School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Adam Kirrander
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
2
|
Karashima S, Suzuki YI, Suzuki T. Ultrafast Extreme Ultraviolet Photoelectron Spectroscopy of Nonadiabatic Photodissociation of CS 2 from 1B 2 ( 1Σ u+) State: Product Formation via an Intermediate Electronic State. J Phys Chem Lett 2021; 12:3755-3761. [PMID: 33844534 DOI: 10.1021/acs.jpclett.1c00864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We studied nonadiabatic dissociation of CS2 from the 1B2 (1Σu+) state using ultrafast extreme ultraviolet photoelectron spectroscopy. A deep UV (200 nm) laser using the filamentation four-wave mixing method and an extreme UV (21.7 eV) laser using the high-order harmonic generation method were employed to achieve the pump-probe laser cross-correlation time of 48 fs. Spectra measured with a high signal-to-noise ratio revealed clear dynamical features of vibrational wave packet motion in the 1B2 state; its electronic decay to lower electronic state(s) within 630 fs; and dissociation into S(1D2), S(3PJ), and CS fragments within 300 fs. The results suggest that both singlet and triplet dissociation occur via intermediate electronic state(s) produced by electronic relaxation from the 1B2 (1Σu+) state.
Collapse
Affiliation(s)
- Shutaro Karashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Yoshi-Ichi Suzuki
- School of Medical Technology, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsucho, Ishikari, Hokkaido 061-0293, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Champenois EG, Greenman L, Shivaram N, Cryan JP, Larsen KA, Rescigno TN, McCurdy CW, Belkacem A, Slaughter DS. Ultrafast photodissociation dynamics and nonadiabatic coupling between excited electronic states of methanol probed by time-resolved photoelectron spectroscopy. J Chem Phys 2019; 150:114301. [DOI: 10.1063/1.5079549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Elio G. Champenois
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Graduate Group in Applied Science and Technology, University of California, Berkeley, California 94720, USA
| | - Loren Greenman
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Davis, California 95616, USA
- Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Niranjan Shivaram
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - James P. Cryan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Kirk A. Larsen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Graduate Group in Applied Science and Technology, University of California, Berkeley, California 94720, USA
| | - Thomas N. Rescigno
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - C. William McCurdy
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Ali Belkacem
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Daniel S. Slaughter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
4
|
Zhang B. Unraveling vibrational wavepacket dynamics using femtosecond ion yield spectroscopy and photoelectron imaging. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1811252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
5
|
Femtosecond time-resolved observation of butterfly vibration in electronically excited o-fluorophenol. Sci Rep 2017; 7:15362. [PMID: 29127301 PMCID: PMC5681578 DOI: 10.1038/s41598-017-14483-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/11/2017] [Indexed: 11/24/2022] Open
Abstract
The butterfly vibration during the hydrogen tunneling process in electronically excited o-fluorophenol has been visualized in real time by femtosecond time-resolved ion yield spectroscopy coupled with time-resolved photoelectron imaging technique. A coherent superposition of out-of-plane C–F butterfly motions is prepared in the first excited electronic state (S1). As the C–F bond vibrates with respect to the aromatic ring, the nuclear geometry varies periodically, leading to the corresponding variation in the photoionization channel. By virtue of the more favorable ionization probability from the nonplanar minimum via resonance with the Rydberg states, the evolution of the vibrational wave packet is manifested as a superimposed beat in the parent-ion transient. Moreover, time-resolved photoelectron spectra offer a direct mapping of the oscillating butterfly vibration between the planar geometry and nonplanar minimum. The beats for the photoelectron peaks originating from the planar geometry are out of phase with those from the nonplanar minimum. Our results provide a physically intuitive and complete picture of the oscillatory flow of energy responsible for the coherent vibrational motion on the excited state surface.
Collapse
|
6
|
Horio T, Spesyvtsev R, Furumido Y, Suzuki T. Real-time detection of S(1D2) photofragments produced from the 1B2(1Σu+) state of CS2 by vacuum ultraviolet photoelectron imaging using 133 nm probe pulses. J Chem Phys 2017; 147:013932. [DOI: 10.1063/1.4982219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Forbes R, Makhija V, Veyrinas K, Stolow A, Lee JWL, Burt M, Brouard M, Vallance C, Wilkinson I, Lausten R, Hockett P. Time-resolved multi-mass ion imaging: Femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera. J Chem Phys 2017; 147:013911. [DOI: 10.1063/1.4978923] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ruaridh Forbes
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Varun Makhija
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Kévin Veyrinas
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Albert Stolow
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
- Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Jason W. L. Lee
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael Burt
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Mark Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Claire Vallance
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Iain Wilkinson
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Methods for Material Development, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Rune Lausten
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Paul Hockett
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
8
|
Ischenko AA, Weber PM, Miller RJD. Capturing Chemistry in Action with Electrons: Realization of Atomically Resolved Reaction Dynamics. Chem Rev 2017; 117:11066-11124. [DOI: 10.1021/acs.chemrev.6b00770] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anatoly A. Ischenko
- Institute
of Fine Chemical Technologies, Moscow Technological University, Vernadskogo
86, 119571 Moscow, Russia
| | - Peter M. Weber
- Department
of Chemistry, Brown University, 324 Brook Street, 02912 Providence, Rhode Island, United States
| | - R. J. Dwayne Miller
- The Max Planck Institute for the Structure and Dynamics of Matter, Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Departments
of Chemistry and Physics, University of Toronto, 80 St. George, M5S 3H6 Toronto, Canada
| |
Collapse
|
9
|
Moreno Carrascosa A, Northey T, Kirrander A. Imaging rotations and vibrations in polyatomic molecules with X-ray scattering. Phys Chem Chem Phys 2017; 19:7853-7863. [DOI: 10.1039/c6cp06793j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An approach for calculating elastic X-ray scattering from polyatomic molecules in specific electronic, vibrational, and rotational states is presented, and is used to consider the characterization of specific states in polyatomic molecules using elastic X-ray scattering.
Collapse
Affiliation(s)
| | - Thomas Northey
- EaStCHEM
- School of Chemistry
- University of Edinburgh
- EH9 3FJ Edinburgh
- UK
| | - Adam Kirrander
- EaStCHEM
- School of Chemistry
- University of Edinburgh
- EH9 3FJ Edinburgh
- UK
| |
Collapse
|
10
|
Yang J, Beck J, Uiterwaal CJ, Centurion M. Imaging of alignment and structural changes of carbon disulfide molecules using ultrafast electron diffraction. Nat Commun 2015; 6:8172. [DOI: 10.1038/ncomms9172] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 07/25/2015] [Indexed: 11/09/2022] Open
|
11
|
Spesyvtsev R, Horio T, Suzuki YI, Suzuki T. Observation of the wavepacket dynamics on the 1B2(1Σu+) state of CS2 by sub-20 fs photoelectron imaging using 159 nm probe pulses. J Chem Phys 2015; 142:074308. [DOI: 10.1063/1.4907749] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Horio T, Spesyvtsev R, Suzuki T. Simultaneous generation of sub-20 fs deep and vacuum ultraviolet pulses in a single filamentation cell and application to time-resolved photoelectron imaging. OPTICS EXPRESS 2013; 21:22423-22428. [PMID: 24104131 DOI: 10.1364/oe.21.022423] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Sub-20 fs pulses of the third, fourth, and fifth harmonics of a Ti:sapphire laser are simultaneously generated using cascaded four-wave mixing in filamentation propagation of the fundamental frequency and the second harmonic pulses in Ne gas. Reflective optics under vacuum are employed after the four-wave mixing to minimize material dispersion of the optical pulses. The cross-correlation between 198 and 159 nm pulses of 18 fs is achieved without dispersion compensation. This new light source is applied to time-resolved photoelectron imaging of carbon disulfide (CS₂).
Collapse
|