1
|
Li W, Zhao L, Kaiser RI. A unified reaction network on the formation of five-membered ringed polycyclic aromatic hydrocarbons (PAHs) and their role in ring expansion processes through radical-radical reactions. Phys Chem Chem Phys 2023; 25:4141-4150. [PMID: 36655590 DOI: 10.1039/d2cp05305e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Exploiting a chemical microreactor in combination with an isomer-selective product identification through fragment-free photoionization utilizing tunable vacuum ultraviolet (VUV) light in tandem with the detection of the ionized molecules by a high resolution reflection time-of-flight mass spectrometer (Re-TOF-MS), the present investigation reveals molecular mass growth processes to four distinct polycyclic aromatic hydrocarbons carrying two six- and one five-membered ring (C13H10): 3H-cyclopenta[a]naphthalene, 1H-cyclopenta[b]naphthalene, 1H-cyclopenta[a]naphthalene, and fluorene in the gas phase. Temperatures of 973 and 1023 K simulating conditions in combustion settings along with circumstellar envelopes of carbon-rich stars and planetary nebulae. These reactions highlight the importance of methyl-substituted aromatic reactants (biphenyl, naphthalene) which can be converted to the methylene (-CH2˙) motive by hydrogen abstraction or photolysis. Upon reaction with acetylene, methylene-substituted aromatics carrying a hydrogen atom at the ortho position of the ring can be then converted to cyclopentadiene-annulated aromatics thus providing a versatile pathway to five-membered ring aromatics at elevated temperatures.
Collapse
Affiliation(s)
- Wang Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China.
| | - Long Zhao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China. .,School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
2
|
Lukianova MA, Feldman VI. Radiation-induced closure of the second aromatic ring: Possible way to PAH starting from a styrene-acetylene complex. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Zhao L, Prendergast M, Kaiser RI, Xu B, Lu W, Ahmed M, Hasan Howlader A, Wnuk SF, Korotchenko AS, Evseev MM, Bashkirov EK, Azyazov VN, Mebel AM. A molecular beam and computational study on the barrierless gas phase formation of (iso)quinoline in low temperature extraterrestrial environments. Phys Chem Chem Phys 2021; 23:18495-18505. [PMID: 34612388 DOI: 10.1039/d1cp02169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite remarkable progress toward the understanding of the formation pathways leading to polycyclic aromatic hydrocarbons (PAHs) in combustion systems and in deep space, the complex reaction pathways leading to nitrogen-substituted PAHs (NPAHs) at low temperatures of molecular clouds and hydrocarbon-rich, nitrogen-containing atmospheres of planets and their moons like Titan have remained largely obscure. Here, we demonstrate through laboratory experiments and computations that the simplest prototype of NPAHs - quinoline and isoquinoline (C9H7N) - can be synthesized via rapid and de-facto barrier-less reactions involving o-, m- and p-pyridinyl radicals (C5H4N˙) with vinylacetylene (C4H4) under low-temperature conditions.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
This Perspective presents recent advances in our knowledge of the fundamental elementary mechanisms involved in the low- and high-temperature molecular mass growth processes to polycyclic aromatic hydrocarbons in combustion systems and in extraterrestrial environments (hydrocarbon-rich atmospheres of planets and their moons, cold molecular clouds, circumstellar envelopes). Molecular beam studies combined with electronic structure calculations extracted five key elementary mechanisms: Hydrogen Abstraction-Acetylene Addition, Hydrogen Abstraction-Vinylacetylene Addition, Phenyl Addition-DehydroCyclization, Radical-Radical Reactions, and Methylidyne Addition-Cyclization-Aromatization. These studies, summarized here, provide compelling evidence that key classes of aromatic molecules can be synthesized in extreme environments covering low temperatures in molecular clouds (10 K) and hydrocarbon-rich atmospheres of planets and their moons (35-150 K) to high-temperature environments like circumstellar envelopes of carbon-rich Asymptotic Giant Branch Stars stars and combustion systems at temperatures above 1400 K thus shedding light on the aromatic universe we live in.
Collapse
Affiliation(s)
- Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
5
|
Doddipatla S, Galimova GR, Wei H, Thomas AM, He C, Yang Z, Morozov AN, Shingledecker CN, Mebel AM, Kaiser RI. Low-temperature gas-phase formation of indene in the interstellar medium. SCIENCE ADVANCES 2021; 7:7/1/eabd4044. [PMID: 33523847 PMCID: PMC7775774 DOI: 10.1126/sciadv.abd4044] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/04/2020] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are fundamental molecular building blocks of fullerenes and carbonaceous nanostructures in the interstellar medium and in combustion systems. However, an understanding of the formation of aromatic molecules carrying five-membered rings-the essential building block of nonplanar PAHs-is still in its infancy. Exploiting crossed molecular beam experiments augmented by electronic structure calculations and astrochemical modeling, we reveal an unusual pathway leading to the formation of indene (C9H8)-the prototype aromatic molecule with a five-membered ring-via a barrierless bimolecular reaction involving the simplest organic radical-methylidyne (CH)-and styrene (C6H5C2H3) through the hitherto elusive methylidyne addition-cyclization-aromatization (MACA) mechanism. Through extensive structural reorganization of the carbon backbone, the incorporation of a five-membered ring may eventually lead to three-dimensional PAHs such as corannulene (C20H10) along with fullerenes (C60, C70), thus offering a new concept on the low-temperature chemistry of carbon in our galaxy.
Collapse
Affiliation(s)
- Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
- Samara National Research University, Samara 443086, Russia
| | - Hongji Wei
- Department of Physics and Astronomy, Benedictine College, Atchison, KS 66002, USA
| | - Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Chao He
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | | | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
6
|
Shiels OJ, Prendergast MB, Savee JD, Osborn DL, Taatjes CA, Blanksby SJ, da Silva G, Trevitt AJ. Five vs. six membered-ring PAH products from reaction of o-methylphenyl radical and two C 3H 4 isomers. Phys Chem Chem Phys 2021; 23:14913-14924. [PMID: 34223848 DOI: 10.1039/d1cp01764k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gas-phase reactions of the o-methylphenyl (o-CH3C6H4) radical with the C3H4 isomers allene (H2C[double bond, length as m-dash]C[double bond, length as m-dash]CH2) and propyne (HC[triple bond, length as m-dash]C-CH3) are studied at 600 K and 4 Torr (533 Pa) using VUV synchrotron photoionisation mass spectrometry, quantum chemical calculations and RRKM modelling. Two major dissociation product ions arise following C3H4 addition: m/z 116 (CH3 loss) and 130 (H loss). These products correspond to small polycyclic aromatic hydrocarbons (PAHs). The m/z 116 signal for both reactions is conclusively assigned to indene (C9H8) and is the dominant product for the propyne reaction. Signal at m/z 130 for the propyne case is attributed to isomers of bicyclic methylindene (C10H10) + H, which contains a newly-formed methylated five-membered ring. The m/z 130 signal for allene, however, is dominated by the 1,2-dihydronaphthalene isomer arising from a newly created six-membered ring. Our results show that new ring formation from C3H4 addition to the methylphenyl radical requires an ortho-CH3 group - similar to o-methylphenyl radical oxidation. These reactions characteristically lead to bicyclic aromatic products, but the structure of the C3H4 co-reactant dictates the structure of the PAH product, with allene preferentially leading to the formation of two six-membered ring bicyclics and propyne resulting in the formation of six and five-membered bicyclic structures.
Collapse
Affiliation(s)
- Oisin J Shiels
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, 2522, Australia.
| | - Matthew B Prendergast
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, 2522, Australia.
| | - John D Savee
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551-0969, USA
| | - David L Osborn
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551-0969, USA
| | - Craig A Taatjes
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551-0969, USA
| | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, 4001, Australia
| | - Gabriel da Silva
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, 2522, Australia.
| |
Collapse
|
7
|
Zhao L, Kaiser RI, Lu W, Kostko O, Ahmed M, Evseev MM, Bashkirov EK, Oleinikov AD, Azyazov VN, Mebel AM, Howlader AH, Wnuk SF. Gas phase formation of cyclopentanaphthalene (benzindene) isomers via reactions of 5- and 6-indenyl radicals with vinylacetylene. Phys Chem Chem Phys 2020; 22:22493-22500. [DOI: 10.1039/d0cp03846f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of indenyl radicals with vinylacetylene leads to cyclopentanaphthalene at low temperature.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Wenchao Lu
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Oleg Kostko
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Musahid Ahmed
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | | | | | - Artem D. Oleinikov
- Samara National Research University
- Samara 443086
- Russian Federation
- Lebedev Physical Institute
- Samara 443011
| | - Valeriy N. Azyazov
- Samara National Research University
- Samara 443086
- Russian Federation
- Lebedev Physical Institute
- Samara 443011
| | - Alexander M. Mebel
- Samara National Research University
- Samara 443086
- Russian Federation
- Department of Chemistry and Biochemistry
- Florida International University
| | - A. Hasan Howlader
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| |
Collapse
|
8
|
A Barrierless Pathway Accessing the C 9H 9 and C 9H 8 Potential Energy Surfaces via the Elementary Reaction of Benzene with 1-Propynyl. Sci Rep 2019; 9:17595. [PMID: 31772216 PMCID: PMC6879741 DOI: 10.1038/s41598-019-53987-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022] Open
Abstract
The crossed molecular beams reactions of the 1-propynyl radical (CH3CC; X2A1) with benzene (C6H6; X1A1g) and D6-benzene (C6D6; X1A1g) were conducted to explore the formation of C9H8 isomers under single-collision conditions. The underlying reaction mechanisms were unravelled through the combination of the experimental data with electronic structure and statistical RRKM calculations. These data suggest the formation of 1-phenyl-1-propyne (C6H5CCCH3) via the barrierless addition of 1-propynyl to benzene forming a low-lying doublet C9H9 intermediate that dissociates by hydrogen atom emission via a tight transition state. In accordance with our experiments, RRKM calculations predict that the thermodynamically most stable isomer – the polycyclic aromatic hydrocarbon (PAH) indene – is not formed via this reaction. With all barriers lying below the energy of the reactants, this reaction is viable in the cold interstellar medium where several methyl-substituted molecules have been detected. Its underlying mechanism therefore advances our understanding of how methyl-substituted hydrocarbons can be formed under extreme conditions such as those found in the molecular cloud TMC-1. Implications for the chemistry of the 1-propynyl radical in astrophysical environments are also discussed.
Collapse
|
9
|
Ghildina AR, Porfiriev DP, Azyazov VN, Mebel AM. Scission of the Five-Membered Ring in 1-H-Inden-1-one C9H6O and Indenyl C9H7 in the Reactions with H and O Atoms. J Phys Chem A 2019; 123:5741-5752. [DOI: 10.1021/acs.jpca.9b04578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A. R. Ghildina
- Samara University, Samara 443086, Russia
- Lebedev Physical Institute, Samara 443011, Russia
| | - D. P. Porfiriev
- Samara University, Samara 443086, Russia
- Lebedev Physical Institute, Samara 443011, Russia
| | - V. N. Azyazov
- Samara University, Samara 443086, Russia
- Lebedev Physical Institute, Samara 443011, Russia
| | - A. M. Mebel
- Samara University, Samara 443086, Russia
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
10
|
Zhao L, Prendergast MB, Kaiser RI, Xu B, Lu W, Ablikim U, Ahmed M, Oleinikov AD, Azyazov VN, Mebel AM, Howlader AH, Wnuk SF. Reactivity of the Indenyl Radical (C 9 H 7 ) with Acetylene (C 2 H 2 ) and Vinylacetylene (C 4 H 4 ). Chemphyschem 2019; 20:1437-1447. [PMID: 30938059 DOI: 10.1002/cphc.201900052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/28/2019] [Indexed: 11/09/2022]
Abstract
The reactions of the indenyl radicals with acetylene (C2 H2 ) and vinylacetylene (C4 H4 ) is studied in a hot chemical reactor coupled to synchrotron based vacuum ultraviolet ionization mass spectrometry. These experimental results are combined with theory to reveal that the resonantly stabilized and thermodynamically most stable 1-indenyl radical (C9 H7 . ) is always formed in the pyrolysis of 1-, 2-, 6-, and 7-bromoindenes at 1500 K. The 1-indenyl radical reacts with acetylene yielding 1-ethynylindene plus atomic hydrogen, rather than adding a second acetylene molecule and leading to ring closure and formation of fluorene as observed in other reaction mechanisms such as the hydrogen abstraction acetylene addition or hydrogen abstraction vinylacetylene addition pathways. While this reaction mechanism is analogous to the bimolecular reaction between the phenyl radical (C6 H5 . ) and acetylene forming phenylacetylene (C6 H5 CCH), the 1-indenyl+acetylene→1-ethynylindene+hydrogen reaction is highly endoergic (114 kJ mol-1 ) and slow, contrary to the exoergic (-38 kJ mol-1 ) and faster phenyl+acetylene→phenylacetylene+hydrogen reaction. In a similar manner, no ring closure leading to fluorene formation was observed in the reaction of 1-indenyl radical with vinylacetylene. These experimental results are explained through rate constant calculations based on theoretically derived potential energy surfaces.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| | - Matthew B Prendergast
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| | - Bo Xu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Utuq Ablikim
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Alexander M Mebel
- Samara National Research University, Samara, 443086, Russia.,Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - A Hasan Howlader
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
11
|
Abplanalp MJ, Góbi S, Kaiser RI. On the formation and the isomer specific detection of methylacetylene (CH 3CCH), propene (CH 3CHCH 2), cyclopropane (c-C 3H 6), vinylacetylene (CH 2CHCCH), and 1,3-butadiene (CH 2CHCHCH 2) from interstellar methane ice analogues. Phys Chem Chem Phys 2019; 21:5378-5393. [PMID: 30221272 DOI: 10.1039/c8cp03921f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pure methane (CH4) ices processed by energetic electrons under ultra-high vacuum conditions to simulate secondary electrons formed via galactic cosmic rays (GCRs) penetrating interstellar ice mantles have been shown to produce an array of complex hydrocarbons with the general formulae: CnH2n+2 (n = 4-8), CnH2n (n = 3-9), CnH2n-2 (n = 3-9), CnH2n-4 (n = 4-9), and CnH2n-6 (n = 6-7). By monitoring the in situ chemical evolution of the ice combined with temperature programmed desorption (TPD) studies and tunable single photon ionization coupled to a reflectron time-of-flight mass spectrometer, specific isomers of C3H4, C3H6, C4H4, and C4H6 were probed. These experiments confirmed the synthesis of methylacetylene (CH3CCH), propene (CH3CHCH2), cyclopropane (c-C3H6), vinylacetylene (CH2CHCCH), 1-butyne (HCCC2H5), 2-butyne (CH3CCCH3), 1,2-butadiene (H2CCCH(CH3)), and 1,3-butadiene (CH2CHCHCH2) with yields of 2.17 ± 0.95 × 10-4, 3.7 ± 1.5 × 10-3, 1.23 ± 0.77 × 10-4, 1.28 ± 0.65 × 10-4, 4.01 ± 1.98 × 10-5, 1.97 ± 0.98 × 10-4, 1.90 ± 0.84 × 10-5, and 1.41 ± 0.72 × 10-4 molecules eV-1, respectively. Mechanistic studies exploring the formation routes of methylacetylene, propene, and vinylacetylene were also conducted, and revealed the additional formation of the 1,2,3-butatriene isomer. Several of the above isomers, methylacetylene, propene, vinylacetylene, and 1,3-butadiene, have repeatedly been shown to be important precursors in the formation of polycyclic aromatic hydrocarbons (PAHs), but until now their interstellar synthesis has remained elusive.
Collapse
Affiliation(s)
- Matthew J Abplanalp
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
12
|
Morozov AN, Mebel AM. Theoretical Study of the Reaction Mechanism and Kinetics of the Phenyl + Allyl and Related Benzyl + Vinyl Associations. J Phys Chem A 2019; 123:1720-1729. [PMID: 30758204 DOI: 10.1021/acs.jpca.9b00345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Potential energy surfaces for the allyl + phenyl and benzyl + vinyl barrierless radical association reactions have been studied at the CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311G** level of theory. Variable reaction coordinate transition state theory (VRC-TST) has been employed to evaluate high-pressure limit rate constants for the barrierless channels. Then, Rice-Ramsperger-Kassel-Marcus master equation (RRKM-ME) calculations have been performed to assess phenomenological rate constants and product branching ratios of various reaction channels at different temperatures and pressures. The initial step of both radical association reactions produces 3-phenylpropene which can further dissociate into a variety of bimolecular products including the indene precursor 1-phenylallyl + H. The results showed that at typical combustion conditions the collisional stabilization of 3-phenylpropene dominates both the phenyl + allyl and benzyl + vinyl reactions at temperatures below 1000 K and remains important at high pressures up to 2500 K. The main bimolecular products of the two reactions at high temperatures are predicted to be benzyl + vinyl and phenyl + allyl, respectively. The well-skipping mechanism to form 1-phenylallyl directly in the allyl + phenyl and benzyl + vinyl reactions appeared to be not significant, however, the reactions can provide some contributions into the formation of the indene precursor via the 3-phenylpropene stabilization/dissociation sequence and most of all, via the formation of 3-phenylpropene itself, which then can undergo H-abstraction by available radicals to produce 1-phenylallyl. The allyl + phenyl reaction can also contribute to the formation of two-ring PAH by producing benzyl radical at high temperatures, either by the well-skipping or stabilization/dissociation mechanisms; in turn, benzyl can readily react with acetylene or propargyl radical to form indene or naphthalene precursors, respectively. Rate expressions for all important reaction channels in a broad range of temperatures and pressures have been generated for kinetic modeling.
Collapse
Affiliation(s)
- Alexander N Morozov
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| |
Collapse
|
13
|
Ghildina AR, Porfiriev DP, Azyazov VN, Mebel AM. The mechanism and rate constants for oxidation of indenyl radical C9H7 with molecular oxygen O2: a theoretical study. Phys Chem Chem Phys 2019; 21:8915-8924. [DOI: 10.1039/c9cp01122f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A theoretical study reveals the reaction mechanism of oxidation of the indenyl radical with molecular oxygen forming predominantly 1-H-inden-1-one + H under combustion conditions.
Collapse
Affiliation(s)
- A. R. Ghildina
- Samara University
- Samara
- Russia
- Lebedev Physical Institute
- Samara
| | - D. P. Porfiriev
- Samara University
- Samara
- Russia
- Lebedev Physical Institute
- Samara
| | - V. N. Azyazov
- Samara University
- Samara
- Russia
- Lebedev Physical Institute
- Samara
| | - A. M. Mebel
- Samara University
- Samara
- Russia
- Department of Chemistry and Biochemistry
- Florida International University
| |
Collapse
|
14
|
Zhao L, Prendergast M, Kaiser RI, Xu B, Ablikim U, Lu W, Ahmed M, Oleinikov AD, Azyazov VN, Howlader AH, Wnuk SF, Mebel AM. How to add a five-membered ring to polycyclic aromatic hydrocarbons (PAHs) – molecular mass growth of the 2-naphthyl radical (C10H7) to benzindenes (C13H10) as a case study. Phys Chem Chem Phys 2019; 21:16737-16750. [DOI: 10.1039/c9cp02930c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of aryl radicals with allene/methylacetylene leads to five-membered ring addition in PAH growth processes.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | | | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Bo Xu
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Utuq Ablikim
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Wenchao Lu
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Musahid Ahmed
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | | | | | - A. Hasan Howlader
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
- Samara National Research University
| |
Collapse
|
15
|
Mebel AM, Landera A, Kaiser RI. Formation Mechanisms of Naphthalene and Indene: From the Interstellar Medium to Combustion Flames. J Phys Chem A 2017; 121:901-926. [DOI: 10.1021/acs.jpca.6b09735] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander M. Mebel
- Department
of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander Landera
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ralf I. Kaiser
- Department
of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
16
|
Parker DSN, Kaiser RI. On the formation of nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) in circumstellar and interstellar environments. Chem Soc Rev 2017; 46:452-463. [DOI: 10.1039/c6cs00714g] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemical evolution of extraterrestrial environments leads to the formation of nitrogen substituted polycyclic aromatic hydrocarbons (NPAHs) via gas phase radical mediated aromatization reactions.
Collapse
Affiliation(s)
| | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawai’i at Manoa
- Honolulu
- USA
| |
Collapse
|
17
|
Mebel AM, Georgievskii Y, Jasper AW, Klippenstein SJ. Pressure-dependent rate constants for PAH growth: formation of indene and its conversion to naphthalene. Faraday Discuss 2016; 195:637-670. [DOI: 10.1039/c6fd00111d] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unraveling the mechanisms for growth of polycyclic aromatic hydrocarbons (PAHs) requires accurate temperature- and pressure-dependent rate coefficients for a great variety of feasible pathways. Even the pathways for the formation of the simplest PAHs, indene and naphthalene, are fairly complex. These pathways provide important prototypes for modeling larger PAH growth. In this work we employ the ab initio RRKM theory-based master equation approach to predict the rate constants involved in the formation of indene and its conversion to naphthalene. The reactions eventually leading to indene involve C9Hx (x = 8–11) potential energy surfaces (PESs) and include C6H5 + C3H4 (allene and propyne), C6H6 + C3H3, benzyl + C2H2, C6H5 + C3H6, C6H6 + C3H5 and C6H5 + C3H5. These predictions allow us to make a number of valuable observations on the role of various mechanisms. For instance, we demonstrate that reactions which can significantly contribute to the formation of indene include phenyl + allene and H-assisted isomerization to indene of its major product, 3-phenylpropyne, benzyl + acetylene, and the reactions of the phenyl radical with propene and the allyl radical, both proceeding via the 3-phenylpropene intermediate. 3-Phenylpropene can be activated to a 1-phenylallyl radical, which in turn rapidly decomposes to indene. Next, indene can be converted to benzofulvene or naphthalene under typical combustion conditions, via its activation by H atom abstraction and methyl substitution on the five-membered ring followed by isomerization and decomposition of the resulting 1-methylindenyl radical, C10H9 → C10H8 + H. Alternatively, the same region of the C10H9 PES can be accessed through the reaction of benzyl with propargyl, C7H7 + C3H3 → C10H10 → C10H9 + H, which therefore can also contribute to the formation of benzofulvene or naphthalene. Benzofulvene easily transforms to naphthalene by H-assisted isomerization. An analysis of the effect of pressure on the reaction outcome and relative product yields is given, and modified Arrhenius fits of the rate constants are reported for the majority of the considered reactions. Ultimately, the implementation of such expressions in detailed kinetic models will help quantify the role of these reactions for PAH growth in various environments.
Collapse
Affiliation(s)
- Alexander M. Mebel
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Yuri Georgievskii
- Chemical Sciences and Engineering Division
- Argonne National Laboratory
- Argonne
- USA
| | - Ahren W. Jasper
- Combustion Research Facility
- Sandia National Laboratories
- Livermore
- USA
| | | |
Collapse
|
18
|
Yang P, Pang M, Li M, Shen W, He R. Vibrationally resolved ¹Lb (¹A')↔S0 (¹A') electronic spectra of benzimidazole and indene: Influence of Duschinsky and Herzberg-Teller effects on weak dipole-allowed transitions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:375-384. [PMID: 26143330 DOI: 10.1016/j.saa.2015.06.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/22/2015] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
Geometrical optimizations of the ground and first excited states of benzimidazole and indene were performed using the density functional theory (DFT) and its time-dependent extension methods (TD-DFT), respectively. Their vibrationally resolved (1)Lb ((1)A')↔S0 ((1)A') absorption and fluorescence spectra were simulated within the Franck-Condon approximation including the Herzberg-Teller (HT) and Duschinsky effects. Calculated results revealed that, with the HT and Duschinsky effects getting involved, the simulated weak (1)Lb ((1)A')↔S0 ((1)A') electronic spectra of the two molecules excellently reproduce the experimental findings. Based on the experimental data and other theoretical results, we tentatively assigned most of the vibrational normal modes which emerged in the experimental spectra of the two molecules. The present theoretical insights are expected to help us understand the nature of electronic transitions in the vibrationally resolved absorption and fluorescence spectra of benzimidazole and its analogues.
Collapse
Affiliation(s)
- Pan Yang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Min Pang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ming Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei Shen
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rongxing He
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
19
|
Wentrup C, Becker J, Diehl M. C15H10 and C15H12 Thermal Chemistry: Phenanthrylcarbene Isomers and Phenylindenes by Falling Solid Flash Vacuum Pyrolysis of Tetrazoles. J Org Chem 2015; 80:7144-9. [DOI: 10.1021/acs.joc.5b01007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Curt Wentrup
- Fachbereich Chemie der Philipps-Universität Marburg, D-35037 Marburg, Germany
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Jürgen Becker
- Fachbereich Chemie der Philipps-Universität Marburg, D-35037 Marburg, Germany
| | - Manfred Diehl
- Fachbereich Chemie der Philipps-Universität Marburg, D-35037 Marburg, Germany
| |
Collapse
|
20
|
Wentrup C, Winter HW, Kvaskoff D. C9H8 Pyrolysis. o-Tolylacetylene, Indene, 1-Indenyl, and Biindenyls and the Mechanism of Indene Pyrolysis. J Phys Chem A 2015; 119:6370-6. [DOI: 10.1021/acs.jpca.5b03453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Curt Wentrup
- Fachbereich
Chemie der Philipps-Universität Marburg, D-35037 Marburg, Germany
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hans-Wilhelm Winter
- Fachbereich
Chemie der Philipps-Universität Marburg, D-35037 Marburg, Germany
| | - David Kvaskoff
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
21
|
Parker DSN, Kaiser RI, Kostko O, Ahmed M. Selective Formation of Indene through the Reaction of Benzyl Radicals with Acetylene. Chemphyschem 2015; 16:2091-3. [DOI: 10.1002/cphc.201500313] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 11/11/2022]
|
22
|
Kaiser RI, Parker DS, Mebel AM. Reaction Dynamics in Astrochemistry: Low-Temperature Pathways to Polycyclic Aromatic Hydrocarbons in the Interstellar Medium. Annu Rev Phys Chem 2015; 66:43-67. [DOI: 10.1146/annurev-physchem-040214-121502] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822;
| | - Dorian S.N. Parker
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822;
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199
| |
Collapse
|
23
|
Rochat R, Yamamoto K, Lopez MJ, Nagae H, Tsurugi H, Mashima K. Organomagnesium-Catalyzed Isomerization of Terminal Alkynes to Allenes and Internal Alkynes. Chemistry 2015; 21:8112-20. [DOI: 10.1002/chem.201500179] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Indexed: 11/10/2022]
|
24
|
Yang T, Parker DSN, Dangi BB, Kaiser RI, Mebel AM. Formation of 5- and 6-methyl-1H-indene (C10H10) via the reactions of the para-tolyl radical (C6H4CH3) with allene (H2CCCH2) and methylacetylene (HCCCH3) under single collision conditions. Phys Chem Chem Phys 2015; 17:10510-9. [DOI: 10.1039/c4cp04288c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Flux contour map for the reactions of the p-tolyl radical with allene-d4 and methylacetylene-d4 at collision energies of around 48 kJ mol−1.
Collapse
Affiliation(s)
- Tao Yang
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | | | - Beni B. Dangi
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| |
Collapse
|
25
|
Muzangwa LG, Yang T, Parker DSN, Kaiser RI, Mebel AM, Jamal A, Ryazantsev M, Morokuma K. A crossed molecular beam and ab initio study on the formation of 5- and 6-methyl-1,4-dihydronaphthalene (C11H12) via the reaction of meta-tolyl (C7H7) with 1,3-butadiene (C4H6). Phys Chem Chem Phys 2015; 17:7699-706. [DOI: 10.1039/c5cp00311c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crossed molecular beam reactions of the meta-tolyl radical with 1,3-butadiene and D6-1,3-butadiene were conducted at collision energies of 48.5 kJ mol−1 and 51.7 kJ mol−1.
Collapse
Affiliation(s)
| | - Tao Yang
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | | | - Ralf. I. Kaiser
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Adeel Jamal
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation
- Emory University
- Atlanta
- USA
| | - Mikhail Ryazantsev
- Biomolecular NMR Laboratory
- St. Petersburg State University
- St. Petersburg
- Russia
| | - Keiji Morokuma
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation
- Emory University
- Atlanta
- USA
- Fukui Institute for Fundamental Chemistry
| |
Collapse
|
26
|
Yang T, Muzangwa L, Parker DSN, Kaiser RI, Mebel AM. Formation of 2- and 1-methyl-1,4-dihydronaphthalene isomers via the crossed beam reactions of phenyl radicals (C6H5) with isoprene (CH2C(CH3)CHCH2) and 1,3-pentadiene (CH2CHCHCHCH3). Phys Chem Chem Phys 2015; 17:530-40. [DOI: 10.1039/c4cp04612a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Crossed molecular beam reactions were exploited to elucidate the chemical dynamics of the reactions of phenyl radicals with isoprene and with 1,3-pentadiene at a collision energy of 55 ± 4 kJ mol−1.
Collapse
Affiliation(s)
- Tao Yang
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Lloyd Muzangwa
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | | | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| |
Collapse
|
27
|
Parker DSN, Dangi BB, Kaiser RI, Jamal A, Ryazantsev M, Morokuma K. Formation of 6-methyl-1,4-dihydronaphthalene in the reaction of the p-tolyl radical with 1,3-butadiene under single-collision conditions. J Phys Chem A 2014; 118:12111-9. [PMID: 25407848 DOI: 10.1021/jp509990u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Crossed molecular beam reactions of p-tolyl (C7H7) plus 1,3-butadiene (C4H6), p-tolyl (C7H7) plus 1,3-butadiene-d6 (C4D6), and p-tolyl-d7 (C7D7) plus 1,3-butadiene (C4H6) were carried out under single-collision conditions at collision energies of about 55 kJ mol(-1). 6-Methyl-1,4-dihydronaphthalene was identified as the major reaction product formed at fractions of about 94% with the monocyclic isomer (trans-1-p-tolyl-1,3-butadiene) contributing only about 6%. The reaction is initiated by barrierless addition of the p-tolyl radical to the terminal carbon atom of the 1,3-butadiene via a van der Waals complex. The collision complex isomerizes via cyclization to a bicyclic intermediate, which then ejects a hydrogen atom from the bridging carbon to form 6-methyl-1,4-dihydronaphthalene through a tight exit transition state located about 27 kJ mol(-1) above the separated products. This is the dominant channel under the present experimental conditions. Alternatively, the collision complex can also undergo hydrogen ejection to form trans-1-p-tolyl-1,3-butadiene; this is a minor contributor to the present experiment. The de facto barrierless formation of a methyl-substituted aromatic hydrocarbons by dehydrogenation via a single event represents an important step in the formation of polycyclic aromatic hydrocarbons (PAHs) and their partially hydrogenated analogues in combustion flames and the interstellar medium.
Collapse
Affiliation(s)
- Dorian S N Parker
- Department of Chemistry, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States
| | | | | | | | | | | |
Collapse
|
28
|
Parker DSN, Kaiser RI, Troy TP, Kostko O, Ahmed M, Mebel AM. Toward the Oxidation of the Phenyl Radical and Prevention of PAH Formation in Combustion Systems. J Phys Chem A 2014; 119:7145-54. [DOI: 10.1021/jp509170x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dorian S. N. Parker
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tyler P. Troy
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander M. Mebel
- Department of Chemistry and
Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
29
|
Cole-Filipiak NC, Shapero M, Negru B, Neumark DM. Revisiting the photodissociation dynamics of the phenyl radical. J Chem Phys 2014; 141:104307. [DOI: 10.1063/1.4894398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Neil C. Cole-Filipiak
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Mark Shapero
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Bogdan Negru
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
30
|
Kaiser RI, Dangi BB, Yang T, Parker DSN, Mebel AM. Reaction dynamics of the 4-methylphenyl radical (p-tolyl) with 1,2-butadiene (1-methylallene): are methyl groups purely spectators? J Phys Chem A 2014; 118:6181-90. [PMID: 25084134 DOI: 10.1021/jp505868q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactions of the 4-tolyl radical (C6H4CH3) and of the D7-4-tolyl radical (C6D4CD3) with 1,2-butadiene (C4H6) have been probed in crossed molecular beams under single collision conditions at a collision energy of about 54 kJ mol(-1) and studied theoretically using ab initio G3(MP2,CC)//B3LYP/6-311G** and statistical RRKM calculations. The results show that the reaction proceeds via indirect scattering dynamics through the formation of a van-der-Waals complex followed by the addition of the radical center of the 4-tolyl radical to the C1 or C3 carbon atoms of 1,2-butadiene. The collision complexes then isomerize by migration of the tolyl group from the C1 (C3) to the C2 carbon atom of the 1,2-butadiene moiety. The resulting intermediate undergoes unimolecular decomposition via elimination of a hydrogen atom from the methyl group of the 1,2-butadiene moiety through a rather loose exit transition state leading to 2-para-tolyl-1,3-butadiene (p4), which likely presents the major reaction product. Our observation combined with theoretical calculations suggest that one methyl group (at the phenyl group) acts as a spectator in the reaction, whereas the other one (at the allene moiety) is actively engaged in the underlying chemical dynamics. On the contrary to the reaction of the phenyl radical with allene, which leads to the formation of indene, the substitution of a hydrogen atom by a methyl group in allene essentially eliminates the formation of bicyclic PAHs such as substituted indenes in the 4-tolyl plus 1,2-butadiene reaction.
Collapse
Affiliation(s)
- Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States
| | | | | | | | | |
Collapse
|
31
|
Yang T, Parker DSN, Dangi BB, Kaiser RI, Kislov VV, Mebel AM. Crossed Beam Reactions of the Phenyl (C6H5; X2A1) and Phenyl-d5 Radical (C6D5; X2A1) with 1,2-Butadiene (H2CCCHCH3; X1A′). J Phys Chem A 2014; 118:4372-81. [DOI: 10.1021/jp411642w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Yang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Dorian S. N. Parker
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Beni B. Dangi
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Vadim V. Kislov
- Department of Chemistry and
Biochemistry, Florida International University, Miami, Florida 33174, United States
| | - Alexander M. Mebel
- Department of Chemistry and
Biochemistry, Florida International University, Miami, Florida 33174, United States
| |
Collapse
|
32
|
Parker DS, Yang T, Kaiser RI, Landera A, Mebel AM. On the formation of ethynylbiphenyl (C14D5H5; C6D5C6H4CCH) isomers in the reaction of D5-phenyl radicals (C6D5; X2A1) with phenylacetylene (C6H5C2H; X1A1) under single collision conditions. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Dangi BB, Yang T, Kaiser RI, Mebel AM. Reaction dynamics of the 4-methylphenyl radical (C6H4CH3; p-tolyl) with isoprene (C5H8) – formation of dimethyldihydronaphthalenes. Phys Chem Chem Phys 2014; 16:16805-14. [DOI: 10.1039/c4cp01056f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction dynamics and energetics of 4-methylphenyl radical with isoprene are reported under single collision condition at collision energy of 58 kJ mol−1 by exploiting the crossed molecular beam technique and electronic structure calculations.
Collapse
Affiliation(s)
- Beni B. Dangi
- Department of Chemistry
- University of Hawai'i at Manoa
- Honolulu, USA
| | - Tao Yang
- Department of Chemistry
- University of Hawai'i at Manoa
- Honolulu, USA
| | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawai'i at Manoa
- Honolulu, USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry
- Florida International University
- Miami, USA
| |
Collapse
|
34
|
Ajaz A, Voukides AC, Cahill KJ, Thamatam R, Skraba-Joiner SL, Johnson RP. Microwave Flash Pyrolysis: C9H8 Interconversions and Dimerisations. Aust J Chem 2014. [DOI: 10.1071/ch14238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The pyrolysis of 2-ethynyltoluene, indene, fluorene, and related compounds has been studied by sealed tube microwave flash pyrolysis (MFP), in concert with modelling of putative mechanistic pathways by density functional theory (DFT) computations. In the MFP technique, samples are admixed with graphite and subjected to intense microwave power (150–300 W) in a quartz reaction tube under a nitrogen atmosphere. The MFP reaction of 2-ethynyltoluene gave mostly indene, the product of a Roger Brown rearrangement (1,2-H shift to a vinylidene) followed by insertion. An additional product was chrysene, the likely result of hydrogen atom loss from indene followed by dimerisation. The intermediacy of dimeric bi-indene structures was supported by pyrolysis of bi-indene and by computational models. Benzo[a]anthracene and benzo[c]phenanthrene are minor products in these reactions. These are shown to arise from pyrolysis of chrysene under the same MFP conditions. MFP reaction of fluorene gave primarily bi-fluorene, bifluorenylidene, and dibenzochrysene, the latter derived from a known Stone–Wales rearrangement.
Collapse
|
35
|
Kim JB, Weichman ML, Yacovitch TI, Shih C, Neumark DM. Slow photoelectron velocity-map imaging spectroscopy of the C9H7 (indenyl) and C13H9 (fluorenyl) anions. J Chem Phys 2013; 139:104301. [DOI: 10.1063/1.4820138] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Chalyavi N, Dryza V, Sanelli JA, Bieske EJ. Gas-phase electronic spectroscopy of the indene cation (C9H8+). J Chem Phys 2013; 138:224307. [DOI: 10.1063/1.4808380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
37
|
Golan A, Ahmed M, Mebel AM, Kaiser RI. A VUV photoionization study of the multichannel reaction of phenyl radicals with 1,3-butadiene under combustion relevant conditions. Phys Chem Chem Phys 2012; 15:341-7. [PMID: 23165625 DOI: 10.1039/c2cp42848b] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied the reaction of phenyl radicals (C(6)H(5)) with 1,3-butadiene (H(2)CCHCHCH(2)) exploiting a high temperature chemical reactor under combustion-like conditions (300 Torr, 873 K). The reaction products were probed in a supersonic beam by utilizing VUV radiation from the Advanced Light Source and by recording the experimental PIE curves at mass-to-charge ratios of m/z = 130 (C(10)H(10)(+)), 116 (C(9)H(8)(+)), and 104 (C(8)H(8)(+)). Our data suggest that the atomic hydrogen (H), methyl (CH(3)), and vinyl (C(2)H(3)) losses are open with estimated branching ratios of about 86 ± 4%, 8 ± 2%, and 6 ± 2%, respectively. The isomer distributions were probed further by fitting the experimentally recorded PIE curves with a linear combination of the PIE curves of individual C(10)H(10), C(9)H(8), and C(8)H(8) isomers. These fits indicate the formation of three C(10)H(10) isomers (trans-1,3-butadienylbenzene, 1,4-dihydronaphthalene, 1-methylindene), three C(9)H(8) isomers (indene, phenylallene, 1-phenyl-1-methylacetylene), and a C(8)H(8) isomer (styrene). A comparison with results from recent crossed molecular beam studies of the 1,3-butadiene-phenyl radical reaction and electronic structure calculations suggests that trans-1,3-butadienylbenzene (130 amu), 1,4-dihydronaphthalene (130 amu), and styrene (104 amu) are reaction products formed as a consequence of a bimolecular reaction between the phenyl radical and 1,3-butadiene. 1-Methylindene (130 amu), indene (116 amu), phenylallene (116 amu), and 1-phenyl-1-methylacetylene (116 amu) are synthesized upon reaction of the phenyl radical with three C(4)H(6) isomers: 1,2-butadiene (H(2)CCCH(CH(3))), 1-butyne (HCCC(2)H(5)), and 2-butyne (CH(3)CCCH(3)); these C(4)H(6) isomers can be formed from 1,3-butadiene via hydrogen atom assisted isomerization reactions or via thermal rearrangements of 1,3-butadiene involving hydrogen shifts in the high temperature chemical reactor.
Collapse
Affiliation(s)
- Amir Golan
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
38
|
Mebel AM, Landera A. Product branching ratios in photodissociation of phenyl radical: a theoretical ab initio/Rice-Ramsperger-Kassel-Marcus study. J Chem Phys 2012; 136:234305. [PMID: 22779591 DOI: 10.1063/1.4726455] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ab initio CCSD(T)/CBS//B3LYP/6-311G** calculations of the potential energy surface for possible dissociation channels of the phenyl radical are combined with microcanonical Rice-Ramsperger-Kassel-Marcus calculations of reaction rate constants in order to predict statistical product branching ratios in photodissociation of c-C(6)H(5) at various wavelengths. The results indicate that at 248 nm the photodissociation process is dominated by the production of ortho-benzyne via direct elimination of a hydrogen atom from the phenyl radical. At 193 nm, the statistical branching ratios are computed to be 63.4%, 21.1%, and 14.4% for the o-C(6)H(4) + H, l-C(6)H(4) ((Z)-hexa-3-ene-1,5-diyne) + H, and n-C(4)H(3) + C(2)H(2) products, respectively, in a contradiction with recent experimental measurements, which showed C(4)H(3) + C(2)H(2) as the major product. Although two lower energy pathways to the i-C(4)H(3) + C(2)H(2) products are identified, they appeared to be kinetically unfavorable and the computed statistical branching ratio of i-C(4)H(3) + C(2)H(2) does not exceed 1%. To explain the disagreement with experiment, we optimized conical intersections between the ground and the first excited electronic states of C(6)H(5) and, based on their structures and energies, suggested the following photodissociation mechanism at 193 nm: c-C(6)H(5) 1 → absorption of a photon → electronically excited 1 → internal conversion to the lowest excited state → conversion to the ground electronic state via conical intersections at CI-2 or CI-3 → non-statistical decay of the vibrationally excited radical favoring the formation of the n-C(4)H(3) + C(2)H(2) products. This scenario can be attained if the intramolecular vibrational redistribution in the CI-2 or CI-3 structures in the ground electronic state is slower than their dissociation to n-C(4)H(3) + C(2)H(2) driven by the dynamical preference.
Collapse
Affiliation(s)
- Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA.
| | | |
Collapse
|
39
|
Kaiser RI, Parker DSN, Zhang F, Landera A, Kislov VV, Mebel AM. PAH Formation under Single Collision Conditions: Reaction of Phenyl Radical and 1,3-Butadiene to Form 1,4-Dihydronaphthalene. J Phys Chem A 2012; 116:4248-58. [DOI: 10.1021/jp301775z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- R. I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - D. S. N. Parker
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - F. Zhang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - A. Landera
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - V. V. Kislov
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - A. M. Mebel
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
40
|
Kislov VV, Mebel AM, Aguilera-Iparraguirre J, Green WH. Reaction of Phenyl Radical with Propylene as a Possible Source of Indene and Other Polycyclic Aromatic Hydrocarbons: An Ab Initio/RRKM-ME Study. J Phys Chem A 2012; 116:4176-91. [DOI: 10.1021/jp212338g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- V. V. Kislov
- Department of Chemistry and Biochemistry, Florida International University, Miami,
Florida 33199, United States
| | - A. M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami,
Florida 33199, United States
| | - J. Aguilera-Iparraguirre
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| | - W. H. Green
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| |
Collapse
|