1
|
Ruthenium complexes bearing N-heterocyclic carbene based CNC and CN^CHC’ pincer ligands: Photophysics, electrochemistry, and solar energy conversion. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Kos M, Rodríguez R, Storch J, Sýkora J, Caytan E, Cordier M, Císařová I, Vanthuyne N, Williams JAG, Žádný J, Církva V, Crassous J. Enantioenriched Ruthenium-Tris-Bipyridine Complexes Bearing One Helical Bipyridine Ligand: Access to Fused Multihelicenic Systems and Chiroptical Redox Switches. Inorg Chem 2021; 60:11838-11851. [PMID: 34297562 DOI: 10.1021/acs.inorgchem.1c01379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and photophysical and chiroptical properties of novel aza[n]helicenes (6a-d, 10a,b, n = 4-7) substituted with one or two 2-pyridyl groups are described. The preparation was performed via an adapted Mallory reaction using aromatic imines as precursors. The obtained novel class of helical 2,2'-bipyridine ligands was then coordinated to Ru(bipy)22+ units, thus affording the first diastereomerically and enantiomerically pure [RuL(bipy)2]2+ (11a,c, L = 6a,c) or [Ru2L'(bipy)4]4+ (12, L' = 10b) complexes. The topology and stereochemistry of these novel metal-based helical architectures were studied in detail, notably using X-ray crystallography. Interestingly, the coordination to ruthenium(II) enabled the preparation of fused multihelical systems incorporating aza- and ruthena-helicenes within the same scaffold. The photophysical, chiroptical, and redox properties of these complexes were examined in detail, and efficient redox-triggered chiroptical switching activity was evidenced.
Collapse
Affiliation(s)
- Martin Kos
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague 6, Czech Republic
| | - Rafael Rodríguez
- Univ Rennes CNRS, , ISCR-UMR 6226 ScanMat-UMS 2001, 35000 Rennes, France
| | - Jan Storch
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague 6, Czech Republic
| | - Jan Sýkora
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague 6, Czech Republic
| | - Elsa Caytan
- Univ Rennes CNRS, , ISCR-UMR 6226 ScanMat-UMS 2001, 35000 Rennes, France
| | - Marie Cordier
- Univ Rennes CNRS, , ISCR-UMR 6226 ScanMat-UMS 2001, 35000 Rennes, France
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2, UMR 7313 Marseille, France
| | | | - Jaroslav Žádný
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague 6, Czech Republic
| | - Vladimír Církva
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague 6, Czech Republic
| | - Jeanne Crassous
- Univ Rennes CNRS, , ISCR-UMR 6226 ScanMat-UMS 2001, 35000 Rennes, France
| |
Collapse
|
3
|
Barnsley JE, Findlay JA, Shillito GE, Pelet WS, Scottwell SØ, McIntyre SM, Tay EJ, Gordon KC, Crowley JD. Long-lived MLCT states for Ru(ii) complexes of ferrocene-appended 2,2'-bipyridines. Dalton Trans 2019; 48:15713-15722. [PMID: 31549707 DOI: 10.1039/c9dt02025j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we present two ruthenium(ii) diimine complexes appended with ferrocene which show metal to ligand charge transfer 3MLCT emission lifetimes around 630 ns. We also present a similar complex with two ferrocene units which has decreased emission. These complexes have been studied by electrochemical, electronic absorption, and Raman, resonance Raman and transient resonance Raman means, coupled with density functional theoretical approaches. For these systems, the optical spectra are dominated by a low energy ruthenium(ii) MLCT transition; which can be modulated by the presence of pendant ferrocene units and the extent of conjugation of the ferrocenyl bipyridine backbone. Tuning of the lowest energy transition in terms of intensity (4 to 18 × 10-3 M-1 cm-1) and energy (535 to 563 nm) was achieved by these means.
Collapse
Affiliation(s)
- Jonathan E Barnsley
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand. keith.gordon@.otago.ac.nz
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Photo-Induced Charge Separation vs. Degradation of a BODIPY-Based Photosensitizer Assessed by TDDFT and RASPT2. Catalysts 2018. [DOI: 10.3390/catal8110520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A meso-mesityl-2,6-iodine substituted boron dipyrromethene (BODIPY) dye is investigated using a suite of computational methods addressing its functionality as photosensitizer, i.e., in the scope of light-driven hydrogen evolution in a two-component approach. Earlier reports on the performance of the present iodinated BODIPY dye proposed a significantly improved catalytic turn-over compared to its unsubstituted parent compound based on the population of long-lived charge-separated triplet states, accessible due to an enhanced spin-orbit coupling (SOC) introduced by the iodine atoms. The present quantum chemical study aims at elucidating the mechanisms of both the higher catalytic performance and the degradation pathways. Time-dependent density functional theory (TDDFT) and multi-state restricted active space perturbation theory through second-order (MS-RASPT2) simulations allowed identifying excited-state channels correlated to iodine dissociation. No evidence for an improved catalytic activity via enhanced SOCs among the low-lying states could be determined. However, the computational analysis reveals that the activation of the dye proceeds via pathways of the (prior chemically) singly-reduced species, featuring a pronounced stabilization of charge-separated species, while low barriers for carbon-iodine bond breaking determine the photostability of the BODIPY dye.
Collapse
|
5
|
Scattergood PA, Sinopoli A, Elliott PI. Photophysics and photochemistry of 1,2,3-triazole-based complexes. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Atkins AJ, González L. Trajectory Surface-Hopping Dynamics Including Intersystem Crossing in [Ru(bpy) 3] 2. J Phys Chem Lett 2017; 8:3840-3845. [PMID: 28766339 DOI: 10.1021/acs.jpclett.7b01479] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Surface-hopping dynamics coupled to linear response TDDFT and explicit nonadiabatic and spin-orbit couplings have been used to model the ultrafast intersystem crossing (ISC) dynamics in [Ru(bpy)3]2+. Simulations using an ensemble of trajectories starting from the singlet metal-to-ligand charge transfer (1MLCT) band show that the manifold of 3MLCT triplet states is first populated from high-lying singlet states within 26 ± 3 fs. ISC competes with an intricate internal conversion relaxation process within the singlet manifold to the lowest singlet state. Normal-mode analysis and principal component analysis, combined with further dynamical simulations where the nuclei are frozen, unequivocally demonstrate that it is not only the high density of states and the large spin-orbit couplings of the system that promote ISC. Instead, geometrical relaxation involving the nitrogen atoms is required to allow for state mixing and efficient triplet population transfer.
Collapse
Affiliation(s)
- Andrew J Atkins
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna , Währinger Straße 17, A-1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna , Währinger Straße 17, A-1090 Vienna, Austria
| |
Collapse
|
7
|
Jäger M, Freitag L, González L. Using computational chemistry to design Ru photosensitizers with directional charge transfer. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Lo WKC, Huff GS, Cubanski JR, Kennedy ADW, McAdam CJ, McMorran DA, Gordon KC, Crowley JD. Comparison of inverse and regular 2-pyridyl-1,2,3-triazole "click" complexes: structures, stability, electrochemical, and photophysical properties. Inorg Chem 2015; 54:1572-87. [PMID: 25615621 DOI: 10.1021/ic502557w] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two inverse 2-pyridyl-1,2,3-triazole "click" ligands, 2-(4-phenyl-1H-1,2,3-triazol-1-yl)pyridine and 2-(4-benzyl-1H-1,2,3-triazol-1-yl)pyridine, and their palladium(II), platinum(II), rhenium(I), and ruthenium(II) complexes have been synthesized in good to excellent yields. The properties of these inverse "click" complexes have been compared to the isomeric regular compounds using a variety of techniques. X-ray crystallographic analysis shows that the regular and inverse complexes are structurally very similar. However, the chemical and physical properties of the isomers are quite different. Ligand exchange studies and density functional theory (DFT) calculations indicate that metal complexes of the regular 2-(1-R-1H-1,2,3-triazol-4-yl)pyridine (R = phenyl, benzyl) ligands are more stable than those formed with the inverse 2-(4-R-1H-1,2,3-triazol-1-yl)pyridine (R = phenyl, benzyl) "click" chelators. Additionally, the bis-2,2'-bipyridine (bpy) ruthenium(II) complexes of the "click" chelators have been shown to have short excited state lifetimes, which in the inverse triazole case, resulted in ejection of the 2-pyridyl-1,2,3-triazole ligand from the complex. Under identical conditions, the isomeric regular 2-pyridyl-1,2,3-triazole ruthenium(II) bpy complexes are photochemically inert. The absorption spectra of the inverse rhenium(I) and platinum(II) complexes are red-shifted compared to the regular compounds. It is shown that conjugation between the substituent group R and triazolyl unit has a negligible effect on the photophysical properties of the complexes. The inverse rhenium(I) complexes have large Stokes shifts, long metal-to-ligand charge transfer (MLCT) excited state lifetimes, and respectable quantum yields which are relatively solvent insensitive.
Collapse
Affiliation(s)
- Warrick K C Lo
- Department of Chemistry, University of Otago , P.O. Box 56, Dunedin 9054, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Santos AR, Escudero D, González L, Orellana G. Unravelling the Quenching Mechanisms of a Luminescent RuIIProbe for CuII. Chem Asian J 2015; 10:622-9. [DOI: 10.1002/asia.201403340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 11/08/2022]
|
10
|
van der Salm H, Elliott AB, Gordon KC. Substituent effects on the electronic properties of complexes with dipyridophenazine and triazole ligands: Electronically connected and disconnected ligands. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Escudero D, Jacquemin D. Computational insights into the photodeactivation dynamics of phosphors for OLEDs: a perspective. Dalton Trans 2015; 44:8346-55. [DOI: 10.1039/c4dt03804e] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this perspective we highlight recent computational efforts to unravel competing photodeactivation mechanisms of radiative and non-radiative nature of phosphors.
Collapse
Affiliation(s)
- Daniel Escudero
- Chimie Et Interdisciplinarité
- Synthèse
- Analyse
- Modélisation (CEISAM)
- 44322 Nantes
| | - Denis Jacquemin
- Chimie Et Interdisciplinarité
- Synthèse
- Analyse
- Modélisation (CEISAM)
- 44322 Nantes
| |
Collapse
|
12
|
Escudero D, Thiel W. Exploring the Triplet Excited State Potential Energy Surfaces of a Cyclometalated Pt(II) Complex: Is There Non-Kasha Emissive Behavior? Inorg Chem 2014; 53:11015-9. [DOI: 10.1021/ic501430x] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Daniel Escudero
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz
1, 45470 Mülheim
an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz
1, 45470 Mülheim
an der Ruhr, Germany
| |
Collapse
|
13
|
Freitag L, González L. Theoretical spectroscopy and photodynamics of a ruthenium nitrosyl complex. Inorg Chem 2014; 53:6415-26. [PMID: 24745977 DOI: 10.1021/ic500283y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Photoactive transition-metal nitrosyl complexes are particularly interesting as potential drugs that deliver nitric oxide (NO) upon UV-light irradiation to be used, e.g., in photodynamic therapy. It is well-recognized that quantum-chemical calculations can guide the rational design and synthesis of molecules with specific functions. In this contribution, it is shown how electronic structure calculations and dynamical simulations can provide a unique insight into the photodissociation mechanism of NO. Exemplarily, [Ru(PaPy3)(NO)](2+) is investigated in detail, as a prototype of a particularly promising class of photoactive metal nitrosyl complexes. The ability of time-dependent density functional theory (TD-DFT) to obtain reliable excited-state energies compared with more sophisticated multiconfigurational spin-corrected calculations is evaluated. Moreover, a TD-DFT-based trajectory surface-hopping molecular dynamics study is employed to reveal the details of the radiationless decay of the molecule via internal conversion and intersystem crossing. Calculations show that the ground state of [Ru(PaPy3)(NO)](2+) includes a significant admixture of the Ru(III)(NO)(0) electronic configuration, in contrast to the previously postulated Ru(II)(NO)(+) structure of similar metal nitrosyls. Moreover, the lowest singlet and triplet excited states populate the antibonding metal d → πNO* orbitals, favoring NO dissociation. Molecular dynamics show that intersystem crossing is ultrafast (<10 fs) and dissociation is initiated in less than 50 fs. The competing relaxation to the lowest S1 singlet state takes place in less than 100 fs and thus competes with NO dissociation, which mostly takes place in the higher-lying excited triplet states. All of these processes are accompanied by bending of the NO ligand, which is not confined to any particular state.
Collapse
Affiliation(s)
- Leon Freitag
- Institut für theoretische Chemie, Universität Wien , Währinger Straße 17, 1090 Vienna, Austria
| | | |
Collapse
|
14
|
Liang AH, Bai FQ, Wang J, Ma JB, Zhang HX. Theoretical Studies on Phosphorescent Materials: The Conjugation-Extended PtII Complexes. Aust J Chem 2014. [DOI: 10.1071/ch14032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A theoretical study on the PtII complex A based on a dimesitylboron (BMes2)-functionalized [Pt(C^N)(acac)] (C^N = 2-phenyl-pyridyl, acac = acetylaceton) complex, as well as three conjugation-extended analogues of the methylimidazole (C*) ligand BMes2-[Pt(C^C*)(acac)] complexes B–D is performed. Their theoretical geometries, electronic structures, emission properties, and the radiative decay rate constants (kr) were also investigated. The energy differences between the two highest occupied orbitals with dominant Pt d-orbital components (Δddocc) of D both at the ground and excited states are the smallest of all. Compared with B, the charge transfer in D possesses a marked trend towards the extended conjugated group, while C changed inconspicuously. The lowest-lying absorptions and the phosphorescence of them can be described as a mixed metal-to-ligand charge transfer (MLCT)/intra-ligand π→π* charge transfer (ILCT) and 3MLCT/3ILCT, respectively. The variation of charge transfer properties induced by extended conjugation and the radiative decay rate constants (kr) calculated revealed that D is a more efficient blue phosphorescence material with a 497 nm emission transition.
Collapse
|
15
|
Escudero D, Heuser E, Meier RJ, Schäferling M, Thiel W, Holder E. Unveiling Photodeactivation Pathways for a New Iridium(III) Cyclometalated Complex. Chemistry 2013; 19:15639-44. [DOI: 10.1002/chem.201301291] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/06/2013] [Indexed: 11/05/2022]
|
16
|
Sicilia V, Fuertes S, Martín A, Palacios A. N-Assisted CPh–H Activation in 3,8-Dinitro-6-phenylphenanthridine. New C,N-Cyclometalated Compounds of Platinum(II): Synthesis, Structure, and Luminescence Studies. Organometallics 2013. [DOI: 10.1021/om400159g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Violeta Sicilia
- Instituto de Síntesis
Química y Catálisis Homogénea-ISQCH, Departamento
de Química Inorgánica, Escuela de Ingeniería
y Arquitectura de Zaragoza, CSIC−Universidad de Zaragoza, Campus Río Ebro, Edificio Torres Quevedo,
50018, Zaragoza, Spain
| | - Sara Fuertes
- Instituto de Síntesis
Química y Catálisis Homogénea-ISQCH, Departamento
de Química Inorgánica, Facultad de Ciencias, CSIC−Universidad de Zaragoza, Pedro Cerbuna
12, 50009 Zaragoza, Spain
| | - Antonio Martín
- Instituto de Síntesis
Química y Catálisis Homogénea-ISQCH, Departamento
de Química Inorgánica, Facultad de Ciencias, CSIC−Universidad de Zaragoza, Pedro Cerbuna
12, 50009 Zaragoza, Spain
| | - Adrián Palacios
- Instituto de Síntesis
Química y Catálisis Homogénea-ISQCH, Departamento
de Química Inorgánica, Facultad de Ciencias, CSIC−Universidad de Zaragoza, Pedro Cerbuna
12, 50009 Zaragoza, Spain
| |
Collapse
|