1
|
Das A, Adio S, Brincken J, Demchenko AV, De Meo C. Sialylation reactions: Expanding the C-5 effect to phosphate leaving groups. Carbohydr Res 2025; 548:109353. [PMID: 39700596 DOI: 10.1016/j.carres.2024.109353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
With the expanding use of phosphates as leaving groups in sialylations, little remains known about the C-5 effect towards their reactivity and stereoselectivity in the presence of a range of acceptors, and in different solvents. Herein we report the comparison between sialyl phosphate donors bearing N-acetyloxazolidinone and trifluoroacetamido functionalities at C-5. Excellent results and complete stereoselectivity were observed in several sialylations, but the outcome was influenced by the nature of the solvent and/or glycosyl acceptor.
Collapse
Affiliation(s)
- Anupama Das
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO, 63103, USA
| | - Shay Adio
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
| | - Jeremy Brincken
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO, 63103, USA
| | - Cristina De Meo
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA.
| |
Collapse
|
2
|
Kang JY, Huang H. Triflic Anhydride (Tf2O)-Activated Transformations of Amides, Sulfoxides and Phosphorus Oxides via Nucleophilic Trapping. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1679-8205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractTrifluoromethanesulfonic anhydride (Tf2O) is utilized as a strong electrophilic activator in a wide range of applications in synthetic organic chemistry, leading to the transient generation of a triflate intermediate. This versatile triflate intermediate undergoes nucleophilic trapping with diverse nucleophiles to yield novel compounds. In this review, we describe the features and applications of triflic anhydride in organic synthesis reported in the past decade, especially in amide, sulfoxide, and phosphorus oxide chemistry through electrophilic activation. A plausible mechanistic pathway for each important reaction is also discussed.1 Introduction2 Amide Chemistry2.1 Carbon Nucleophiles2.2 Hydrogen Nucleophiles2.3 Nitrogen Nucleophiles2.4 Oxygen and Sulfur Nucleophiles2.5 hosphorus Nucleophiles2.6 A Vilsmeier-Type Reagent2.7 Umpolung Reactivity in Amides3 Sulfoxide Chemistry3.1 Oxygen Nucleophiles3.2 Carbon Nucleophiles3.3 Nitrogen Nucleophiles3.4 Thionium Reagents4 Phosphorus Chemistry4.1 Hendrickson’s Reagent4.2 Diaryl Phosphine Oxides4.3 Phosphonates, Phosphates and Phosphinates5 Conclusion and Outlook
Collapse
Affiliation(s)
- Jun Yong Kang
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University
| |
Collapse
|
3
|
Zhang Y, Yang M, Wang X, Gu G, Cai F. Improved α-Sialylation through the Synergy of 5- N,4- O-Oxazolidinone Protection and Exocyclic C-1 Neighboring Group Participation. J Org Chem 2020; 85:13589-13601. [PMID: 33058677 DOI: 10.1021/acs.joc.0c01719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stereoselective construction of α-sialyl linkages is one of the most significant challenges in carbohydrate chemistry. In this research, we developed a novel strategy for stereoselective synthesis of α-linked sialosides by protecting the 5-N,4-O-positions of a sialyl donor with an oxazolidinone group and its C-1 carboxylic functionality with a cyanoethyl ester to promote α-glycosylation. We also adopted the more electrophilic N-bromosuccinimide as a promoter to readily activate p-tolyl thiosialoside at -78 °C. The sialylation using this sialyl donor gave excellent yields and α-selectivity. The new synthetic method was used to successfully construct naturally occurring α-sialosides having sialic acid linked to the 6-O- or 3-O-position of galactoside, or 8-O-position of another sialic acid, respectively, as well as other α-linked sialosides.
Collapse
Affiliation(s)
- Yongliang Zhang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Min Yang
- Center for Analysis and Characterization, School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai 201210, China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry & School of Pharmacy, Lanzhou University, 222 Tianshui S. Road, Lanzhou 730000, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Feng Cai
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
4
|
Chen J, Hansen T, Zhang Q, Liu D, Sun Y, Yan H, Codée JDC, Schmidt RR, Sun J. 1‐Picolinyl‐5‐azido Thiosialosides: Versatile Donors for the Stereoselective Construction of Sialyl Linkages. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jian Chen
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Thomas Hansen
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, 2333 CC Leiden Netherlands
| | - Qing‐Ju Zhang
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - De‐Yong Liu
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yao Sun
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Hao Yan
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jeroen D. C. Codée
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, 2333 CC Leiden Netherlands
| | - Richard R. Schmidt
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
- Department of ChemistryUniversity of Konstanz 78457 Konstanz Germany
| | - Jian‐Song Sun
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| |
Collapse
|
5
|
Chen J, Hansen T, Zhang Q, Liu D, Sun Y, Yan H, Codée JDC, Schmidt RR, Sun J. 1‐Picolinyl‐5‐azido Thiosialosides: Versatile Donors for the Stereoselective Construction of Sialyl Linkages. Angew Chem Int Ed Engl 2019; 58:17000-17008. [DOI: 10.1002/anie.201909177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jian Chen
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Thomas Hansen
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, 2333 CC Leiden Netherlands
| | - Qing‐Ju Zhang
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - De‐Yong Liu
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yao Sun
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Hao Yan
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jeroen D. C. Codée
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, 2333 CC Leiden Netherlands
| | - Richard R. Schmidt
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
- Department of ChemistryUniversity of Konstanz 78457 Konstanz Germany
| | - Jian‐Song Sun
- The National Research Center for Carbohydrate SynthesisJiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| |
Collapse
|
6
|
Zeng J, Wang R, Zhang S, Fang J, Liu S, Sun G, Xu B, Xiao Y, Fu D, Zhang W, Hu Y, Wan Q. Hydrogen-Bonding-Assisted Exogenous Nucleophilic Reagent Effect for β-Selective Glycosylation of Rare 3-Amino Sugars. J Am Chem Soc 2019; 141:8509-8515. [PMID: 31067044 DOI: 10.1021/jacs.9b01862] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Challenges for stereoselective glycosylation of deoxy sugars are notorious in carbohydrate chemistry. We herein report a novel strategy for the construction of the less investigated β-glycosidic bonds of 3,5- trans-3-amino-2,3,6-trideoxy sugars (3,5- trans-3-ADSs), which constitute the core structure of several biologically important antibiotics. Current protocol leverages a C-3 axial sulfonamide group in 3,5- trans-3-ADSs as a hydrogen-bond (H-bond) donor and repurposes substoichiometric phosphine oxide as an exogenous nucleophilic reagent (exNu) to establish an intramolecular H-bond between the former and the derived α-oxyphosphonium ion. This pivotal interaction stabilizes the α-face-covered intermediate to inhibit the formation of the more reactive β-intermediate, thereby yielding reversed β-selectivity, which is unconventional for an exNu-mediated glycosylation system. A wide range of substrates was accommodated, and good to excellent β-selectivities were ensured by this H-bonding-assisted exNu effect. The robustness of the current strategy was further attested by the architectural modification of natural products and drugs containing 3,5- trans-3-ADSs, as well as the synthesis of a trisaccharide unit in avidinorubicin.
Collapse
Affiliation(s)
- Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Ruobin Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Shuxin Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Jing Fang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Shanshan Liu
- The Institute for Advanced Studies , Wuhan University , 299 Bayi Street , Wuhan , Hubei 430072 , China
| | - Guangfei Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Bingbing Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Ying Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Dengxian Fu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Wenqi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Yixin Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China.,Institute of Brain Research , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| |
Collapse
|
7
|
Xiao M, Lei N, Zhang Y, Huo Z, Ding D, Gao J, Guo Z, Gu G, Cai F. Per-O-Benzylated Ethyl 5-N-Acetyl-α-thiosialoside as a Glycosyl Donor for α-Silylation. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2018.1508589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mei Xiao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Na Lei
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Yongliang Zhang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Zhenni Huo
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Dahai Ding
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Jian Gao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Zhongwu Guo
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Feng Cai
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| |
Collapse
|
8
|
Zeng J, Liu Y, Chen W, Zhao X, Meng L, Wan Q. Glycosyl Sulfoxides in Glycosylation Reactions. Top Curr Chem (Cham) 2018; 376:27. [DOI: 10.1007/s41061-018-0205-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023]
|
9
|
Abstract
Investigations of methodologies aimed on improving the stereoselective synthesis of sialosides and the efficient assembly of sialic acid glycoconjugates has been the mission of dedicated research groups from the late 1960s. This review presents major accomplishments in the field, with the emphasis on significant breakthroughs and influential synthetic strategies of the last decade.
Collapse
|
10
|
Modulation of the stereoselectivity and reactivity of glycosylation via ( p -Tol) 2 SO/Tf 2 O preactivation strategy: From O -, C -sialylation to general O -, N -glycosylation. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
A novel O -fucosylation strategy preactivated by ( p -Tol) 2 SO/Tf 2 O and its application for the synthesis of Lewis blood group antigen Lewis a. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Liu GJ, Long Z, Lv HJ, Li CY, Xing GW. A dialdehyde–diboronate-functionalized AIE luminogen: design, synthesis and application in the detection of hydrogen peroxide. Chem Commun (Camb) 2016; 52:10233-6. [DOI: 10.1039/c6cc05116b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A dialdehyde–diboronate-functionalized tetraphenylethene (TPE-DABF) was reported as a H2O2-specific AIE luminogen.
Collapse
Affiliation(s)
- Guang-Jian Liu
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Zi Long
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Hai-juan Lv
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Cui-yun Li
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guo-wen Xing
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|
13
|
Zhang XT, Gu ZY, Liu L, Wang S, Xing GW. Synthesis and labeling of α-(2,9)-trisialic acid with cyanine dyes for imaging of glycan-binding receptors on living cells. Chem Commun (Camb) 2015; 51:8606-9. [DOI: 10.1039/c5cc01907a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cyanine tagged oligosialic acid was utilized as an efficient fluorescent probe to image the glycan-binding receptors on PC-12 cells.
Collapse
Affiliation(s)
- Xiao-tai Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Zhen-yuan Gu
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Libing Liu
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Shu Wang
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Guo-wen Xing
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|
14
|
Liu GJ, Zhang XT, Xing GW. A general method for N-glycosylation of nucleobases promoted by (p-Tol)2SO/Tf2O with thioglycoside as donor. Chem Commun (Camb) 2015; 51:12803-6. [DOI: 10.1039/c5cc03617h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
35 nucleosides were synthesized by coupling thioglycosides with pyrimidines and purines under the preactivation of (p-Tol)2SO/Tf2O in high yields and with β-stereoselectivities.
Collapse
Affiliation(s)
- Guang-jian Liu
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Xiao-tai Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guo-wen Xing
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|
15
|
Kancharla PK, Kato T, Crich D. Probing the influence of protecting groups on the anomeric equilibrium in sialic acid glycosides with the persistent radical effect. J Am Chem Soc 2014; 136:5472-80. [PMID: 24606062 PMCID: PMC4004215 DOI: 10.1021/ja501276r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Indexed: 12/11/2022]
Abstract
A method for the investigation of the influence of protecting groups on the anomeric equilibrium in the sialic acid glycosides has been developed on the basis of the equilibration of O-sialyl hydroxylamines by reversible homolytic scission of the glycosidic bond following the dictates of the Fischer-Ingold persistent radical effect. It is found that a trans-fused 4O,5N-oxazolidinone group stabilizes the equatorial glycoside, i.e., reduces the anomeric effect, when compared to the 4O,5N-diacetyl protected systems. This effect is discussed in terms of the powerful electron-withdrawing nature of the oxazolidinone system, which in turn is a function of its strong dipole moment in the mean plane of the pyranose ring system. The new equilibration method displays a small solvent effect and is most pronounced in less polar media consistent with the anomeric effect in general. The unusual (for anomeric radicals) poor kinetic selectivity of anomeric sialyl radicals is discussed in terms of the planar π-type structure of these radicals and of competing 1,3-diaxial interactions in the diastereomeric transition states for trapping on the α- and β-faces of the radical.
Collapse
Affiliation(s)
- Pavan K Kancharla
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | | | | |
Collapse
|
16
|
Zhang XT, Gu ZY, Xing GW. Comparative studies on the O-sialylation with four different α/β-oriented (N-acetyl)-5-N,4-O-carbonyl-protected p-toluenethiosialosides as donors. Carbohydr Res 2014; 388:1-7. [PMID: 24594527 DOI: 10.1016/j.carres.2014.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/18/2022]
Abstract
Four types of 5-N,4-O-carbonyl-protected p-toluenethiosialosides were synthesized and their couplings with different acceptors were thoroughly investigated. The results indicate that the sialyl donor structure, the amount of glycosyl acceptor, and the detailed promotion conditions have great influence on the sialylation stereoselectivties and product yields. Under the (p-Tol)2SO/Tf2O activation conditions, the glycosylations with simple alcohols provided declined α-selectivities and higher yields with increasing the amounts of acceptors from 1.1 equiv to 2.0equiv. However, the outcome of same sialylation was independent of the relative amounts of sugar alcohol acceptors. With NIS/TfOH as promoter, the α-selectivities of the sialylations were significantly improved compared with the cases activated by (p-Tol)2SO/Tf2O. In general, the difference in configuration of N-acetylated sialyl donors (D2 and D4) has little effect on the sialylation yield and stereoselectivity. In contrast, the N-deacetylated α/β sialyl donors (D1 and D3) show complex sialylation profiles with different acceptors.
Collapse
Affiliation(s)
- Xiao-tai Zhang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhen-yuan Gu
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guo-wen Xing
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
17
|
Xu FF, Wang Y, Xiong DC, Ye XS. Stereoselective Synthesis of the Trisaccharide Moiety of Ganglioside HLG-2. J Org Chem 2013; 79:797-802. [DOI: 10.1021/jo402378a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fei-Fei Xu
- State Key
Laboratory of Natural
and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Yue Wang
- State Key
Laboratory of Natural
and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - De-Cai Xiong
- State Key
Laboratory of Natural
and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Xin-Shan Ye
- State Key
Laboratory of Natural
and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| |
Collapse
|
18
|
Gu ZY, Zhang XT, Zhang JX, Xing GW. Highly efficient α-C-sialylation promoted by (p-Tol)2SO/Tf2O with N-acetyl-5-N,4-O-oxazolidione protected thiosialoside as donor. Org Biomol Chem 2013; 11:5017-22. [DOI: 10.1039/c3ob40876k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Kancharla PK, Navuluri C, Crich D. Dissecting the influence of oxazolidinones and cyclic carbonates in sialic acid chemistry. Angew Chem Int Ed Engl 2012; 51:11105-9. [PMID: 22976809 PMCID: PMC3489474 DOI: 10.1002/anie.201204400] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/02/2012] [Indexed: 11/11/2022]
Abstract
At a moment's notice: Thermal equilibration of 1 and mass spectral analysis of sialyl phosphates suggest that the 4O,5N-oxazolidinone and the 4,5-O-carbonate systems influence the anomeric effect and the mechanisms of sialidation by virtue of their dipole moment in the mean plane of the pyranose ring. The electron-withdrawing effect destabilizes 2 and promotes associative glycosylation mechanisms. TEMPO = 2,2,6,6-tetramethylpiperidine N-oxide.
Collapse
Affiliation(s)
- Pavan K Kancharla
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | | | | |
Collapse
|
20
|
Kancharla PK, Navuluri C, Crich D. Dissecting the Influence of Oxazolidinones and Cyclic Carbonates in Sialic Acid Chemistry. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204400] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Noel A, Delpech B, Crich D. Highly Stereoselective Synthesis of Primary, Secondary, and Tertiary α-S-Sialosides under Lewis Acidic Conditions. Org Lett 2012; 14:4138-41. [DOI: 10.1021/ol301779e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Amandine Noel
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France, and Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Bernard Delpech
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France, and Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - David Crich
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France, and Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|