1
|
Chawla M, Poater A, Oliva R, Cavallo L. Unveiling structural and energetic characterization of the emissive RNA alphabet anchored in the methylthieno[3,4- d]pyrimidine heterocycle core. Phys Chem Chem Phys 2024; 26:16358-16368. [PMID: 38805177 DOI: 10.1039/d3cp06136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
This study presents a comprehensive theoretical exploration of the fluorescent non-natural emissive nucleobases- mthA, mthG, mthC, and mthU derived from the methylthieno[3,4-d]pyrimidine heterocycle. Our calculations, aligning with experimental findings, reveal that these non-natural bases exert minimal influence on the geometry of classical Watson-Crick base pairs within an RNA duplex, maintaining H-bonding akin to natural bases. In terms of energy, the impact of the modified bases, but for mthG, is also found to be little significant. We delved into an in-depth analysis of the photophysical properties of these non-natural bases. This investigation unveiled a correlation between their absorption/emission peaks and the substantial impact of the modification on the energy levels of the highest unoccupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbital (LUMO). Notably, this alteration in energy levels resulted in a significant reduction of the HOMO-LUMO gap, from approximately 5.4-5.5 eV in the natural bases, to roughly 3.9-4.7 eV in the modified bases. This shift led to a consequential change in absorption and emission spectra towards longer wavelengths, elucidating their bathochromic shift.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia.
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Ma Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, Naples, I-80143, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
2
|
Busschaert N, Maity D, Samanta PK, English NJ, Hamilton AD. Improving structural stability and anticoagulant activity of a thrombin binding aptamer by aromatic modifications. Chembiochem 2022; 23:e202100670. [PMID: 34985829 DOI: 10.1002/cbic.202100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Indexed: 11/07/2022]
Abstract
The thrombin binding aptamer (TBA) is a 15-mer DNA oligonucleotide (5'-GGTTGGTGTGGTTGG-3'), that can form a stable intramolecular antiparallel chair-like G-quadruplex structure. This aptamer shows anticoagulant properties by interacting with one of the two anion binding sites of thrombin, namely the fibrinogen-recognition exosite. Here, we demonstrate that terminal modification of TBA with aromatic fragments such as coumarin, pyrene and perylene diimide (PDI), improves the G-quadruplex stability. The large aromatic surface of these dyes can π-π stack to the G-quadruplex or to each other, thereby stabilizing the aptamer. With respect to the original TBA, monoPDI-functionalized TBA exhibited the most remarkable improvement in melting temperature (ΔT m ≈ +18 °C) and displayed enhanced anticoagulant activity.
Collapse
Affiliation(s)
- Nathalie Busschaert
- Tulane University, Department of Chemistry, 6400 Freret St, 70118, New Orleans, UNITED STATES
| | | | - Pralok K Samanta
- University College Dublin, School of Chemical and Bioprocess engineering, IRELAND
| | - Niall J English
- University College Dublin, School of chemical and Bioprocess engineering, IRELAND
| | | |
Collapse
|
3
|
Jabed MA, Dandu N, Tretiak S, Kilina S. Passivating Nucleobases Bring Charge Transfer Character to Optically Active Transitions in Small Silver Nanoclusters. J Phys Chem A 2020; 124:8931-8942. [PMID: 33079551 DOI: 10.1021/acs.jpca.0c06974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA-wrapped silver nanoclusters (DNA-AgNCs) are known for their efficient luminescence. However, their emission is highly sensitive to the DNA sequence, the cluster size, and its charge state. To get better insights into photophysics of these hybrid systems, simulations based on density functional theory (DFT) are performed. Our calculations elucidate the effect of the structural conformations, charges, solvent polarity, and passivating bases on optical spectra of DNA-AgNCs containing five and six Ag atoms. It is found that inclusion of water in calculations as a polar solvent media results in stabilization of nonplanar conformations of base-passivated clusters, while their planar conformations are more stable in vacuum, similar to the bare Ag5 and Ag6 clusters. Cytosines and guanines interact with the cluster twice stronger than thymines, due to their larger dipole moments. In addition to the base-cluster interactions, hydrogen bonds between bases notably contribute to the structure stabilization. While the relative intensity, line width, and the energy of absorption peaks are slightly changing depending on the cluster charge, conformations, and base types, the overall spectral shape with five well-resolved bands at 2.5-5.5 eV is consistent for all structures. Independent of the passivating bases and the cluster size and charge, the low energy optical transitions at 2.5-3.5 eV exhibit a metal to ligand charge transfer (MLCT) character with the main contribution emerging from Ag-core to the bases. Cytosines facilitate the MLCT character to a larger degree comparing to the other bases. However, the doublet transitions in clusters with the open shell electronic structure (Ag5 and Ag6+) result in appearance of additional red-shifted (<2.5 eV) and optically weak band with negligible MLCT character. The passivated clusters with the closed shell electronic structure (Ag5+ and Ag6) exhibit higher optical intensity of their lowest transitions with much higher MLCT contribution, thus having better potential for emission, than their open shell counterparts.
Collapse
Affiliation(s)
- Mohammed A Jabed
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Naveen Dandu
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sergei Tretiak
- Center for Nonlinear Studies, Center for Integrated Nanotechnologies, and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
4
|
Chawla M, Poater A, Besalú-Sala P, Kalra K, Oliva R, Cavallo L. Theoretical characterization of sulfur-to-selenium substitution in an emissive RNA alphabet: impact on H-bonding potential and photophysical properties. Phys Chem Chem Phys 2018; 20:7676-7685. [PMID: 29497733 DOI: 10.1039/c7cp07656h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We employ density functional theory (DFT) and time-dependent DFT (TDDFT) calculations to investigate the structural, energetic and optical properties of a new computationally designed RNA alphabet, where the nucleobases, tsA, tsG, tsC, and tsU (ts-bases), have been derived by replacing sulfur with selenium in the previously reported tz-bases, based on the isothiazolo[4,3-d]pyrimidine heterocycle core. We find out that the modeled non-natural bases have minimal impact on the geometry and energetics of the classical Watson-Crick base pairs, thus potentially mimicking the natural bases in a RNA duplex in terms of H-bonding. In contrast, our calculations indicate that H-bonded base pairs involving the Hoogsteen edge of purines are destabilized as compared to their natural counterparts. We also focus on the photophysical properties of the non-natural bases and correlate their absorption/emission peaks to the strong impact of the modification on the energy of the lowest unoccupied molecular orbital. It is indeed stabilized by roughly 1.1-1.6 eV as compared to the natural analogues, resulting in a reduction of the gap between the highest occupied and the lowest unoccupied molecular orbital from 5.3-5.5 eV in the natural bases to 3.9-4.2 eV in the modified ones, with a consequent bathochromic shift in the absorption and emission spectra. Overall, our analysis clearly indicates that the newly modelled ts-bases are expected to exhibit better fluorescent properties as compared to the previously reported tz-bases, while retaining similar H-bonding properties. In addition, we show that a new RNA alphabet based on size-extended benzo-homologated ts-bases can also form stable Watson-Crick base pairs with the natural complementary nucleobases.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
5
|
Imidazolyl-Naphthalenediimide-Based Threading Intercalators of DNA. Chembiochem 2016; 17:2162-2171. [DOI: 10.1002/cbic.201600478] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Indexed: 12/22/2022]
|
6
|
Chawla M, Poater A, Oliva R, Cavallo L. Structural and energetic characterization of the emissive RNA alphabet based on the isothiazolo[4,3-d]pyrimidine heterocycle core. Phys Chem Chem Phys 2016; 18:18045-53. [PMID: 27328414 DOI: 10.1039/c6cp03268k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We present theoretical characterization of fluorescent non-natural nucleobases, (tz)A, (tz)G, (tz)C, and (tz)U, derived from the isothiazolo[4,3-d]pyrimidine heterocycle. Consistent with the experimental evidence, our calculations show that the non-natural bases have minimal impact on the geometry and stability of the classical Watson-Crick base pairs, allowing them to accurately mimic natural bases in a RNA duplex, in terms of H-bonding. In contrast, our calculations indicate that H-bonded base pairs involving the Hoogsteen edge are destabilized relative to their natural counterparts. Analysis of the photophysical properties of the non-natural bases allowed us to correlate their absorption/emission peaks to the strong impact of the modification on the energy of the lowest unoccupied molecular orbital, LUMO, which is stabilized by roughly 1.0-1.2 eV relative to the natural analogues, while the highest occupied molecular orbital, HOMO, is not substantially affected. As a result, the HOMO-LUMO gap is reduced from 5.3-5.5 eV in the natural bases to 4.0-4.4 eV in the modified ones, with a consequent bathochromic shift in the absorption and emission spectra.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia.
| | | | | | | |
Collapse
|
7
|
Samanta PK, Pati SK. Theoretical understanding of two-photon-induced fluorescence of isomorphic nucleoside analogs. Phys Chem Chem Phys 2016; 17:10053-8. [PMID: 25785569 DOI: 10.1039/c5cp00134j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We use ab initio Density Functional Theory (DFT) and Time-dependent DFT (TDDFT) calculations for a detailed understanding of one-photon absorption (1PA) and two-photon absorption (2PA) cross sections of eight different nucleoside analogs. The results are compared and contrasted with the available experimental data. Our calculated results show that the low energy peaks in the absorption spectra mainly arise because of the π-π* electronic transition of the nucleoside analogs. The emission spectra of the nucleoside analogs are also calculated using TDDFT methods. The calculated absorption and emission spectra in the presence of a solvent follow the same trend as those found experimentally. Our results demonstrate that the nucleoside analogs show significantly different electronic and optical properties, although their bonding aspects towards Watson-Crick base pairing remain the same. We also derive the microscopic details of the origin of nonlinear optical properties of the nucleoside analogs.
Collapse
Affiliation(s)
- Pralok K Samanta
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | | |
Collapse
|
8
|
Narayanaswamy N, Das S, Samanta PK, Banu K, Sharma GP, Mondal N, Dhar SK, Pati SK, Govindaraju T. Sequence-specific recognition of DNA minor groove by an NIR-fluorescence switch-on probe and its potential applications. Nucleic Acids Res 2015; 43:8651-63. [PMID: 26350219 PMCID: PMC4605319 DOI: 10.1093/nar/gkv875] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022] Open
Abstract
In molecular biology, understanding the functional and structural aspects of DNA requires sequence-specific DNA binding probes. Especially, sequence-specific fluorescence probes offer the advantage of real-time monitoring of the conformational and structural reorganization of DNA in living cells. Herein, we designed a new class of D2A (one-donor-two-acceptor) near-infrared (NIR) fluorescence switch-on probe named quinone cyanine–dithiazole (QCy–DT) based on the distinctive internal charge transfer (ICT) process for minor groove recognition of AT-rich DNA. Interestingly, QCy–DT exhibited strong NIR-fluorescence enhancement in the presence of AT-rich DNA compared to GC-rich and single-stranded DNAs. We show sequence-specific minor groove recognition of QCy–DT for DNA containing 5′-AATT-3′ sequence over other variable (A/T)4 sequences and local nucleobase variation study around the 5′-X(AATT)Y-3′ recognition sequence revealed that X = A and Y = T are the most preferable nucleobases. The live cell imaging studies confirmed mammalian cell permeability, low-toxicity and selective staining capacity of nuclear DNA without requiring RNase treatment. Further, Plasmodium falciparum with an AT-rich genome showed specific uptake with a reasonably low IC50 value (<4 µM). The ease of synthesis, large Stokes shift, sequence-specific DNA minor groove recognition with switch-on NIR-fluorescence, photostability and parasite staining with low IC50 make QCy–DT a potential and commercially viable DNA probe.
Collapse
Affiliation(s)
- Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, India
| | - Shubhajit Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Pralok K Samanta
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Khadija Banu
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | - Neelima Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Suman K Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Swapan K Pati
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - T Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, India
| |
Collapse
|
9
|
Tanaka Y, Kondo J, Sychrovský V, Šebera J, Dairaku T, Saneyoshi H, Urata H, Torigoe H, Ono A. Structures, physicochemical properties, and applications of T–HgII–T, C–AgI–C, and other metallo-base-pairs. Chem Commun (Camb) 2015; 51:17343-60. [DOI: 10.1039/c5cc02693h] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this feature article, recent progress and future perspectives of metal-mediated base-pairs such as T–Hg(ii)–T and C–Ag(i)–C are presented.
Collapse
Affiliation(s)
- Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences
- Tokushima Bunri University
- Tokushima
- Japan
- Graduate School of Pharmaceutical Sciences
| | - Jiro Kondo
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Chiyoda-ku
- Japan
| | - Vladimír Sychrovský
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Praha 6
- Czech Republic
| | - Jakub Šebera
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Praha 6
- Czech Republic
- Institute of Physics
| | - Takenori Dairaku
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai
- Japan
| | - Hisao Saneyoshi
- Department of Material & Life Chemistry
- Kanagawa University
- Yokohama
- Japan
| | - Hidehito Urata
- Osaka University of Pharmaceutical Sciences
- Takatsuki
- Japan
| | - Hidetaka Torigoe
- Department of Applied Chemistry
- Faculty of Science
- Tokyo University of Science
- Shinjuku-ku
- Japan
| | - Akira Ono
- Department of Material & Life Chemistry
- Kanagawa University
- Yokohama
- Japan
| |
Collapse
|
10
|
Narayanaswamy N, Kumar M, Das S, Sharma R, Samanta PK, Pati SK, Dhar SK, Kundu TK, Govindaraju T. A thiazole coumarin (TC) turn-on fluorescence probe for AT-base pair detection and multipurpose applications in different biological systems. Sci Rep 2014; 4:6476. [PMID: 25252596 PMCID: PMC4174567 DOI: 10.1038/srep06476] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/27/2014] [Indexed: 11/09/2022] Open
Abstract
Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology.
Collapse
Affiliation(s)
- Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, Karnataka, India
| | - Manoj Kumar
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, Karnataka, India
| | - Sadhan Das
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, Karnataka, India
| | - Rahul Sharma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Pralok K Samanta
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India
| | - Swapan K Pati
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India
| | - Suman K Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, Karnataka, India
| | - T Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, Karnataka, India
| |
Collapse
|
11
|
Su M, Tomás-Gamasa M, Serdjukow S, Mayer P, Carell T. Synthesis and properties of a Cu(II) complexing pyrazole ligandoside in DNA. Chem Commun (Camb) 2014; 50:409-11. [PMID: 24263097 DOI: 10.1039/c3cc47561a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development of metal base pairs is of immense importance for the construction of DNA nanostructures. Here we report the synthesis of a biaryl pyrazole-phenol nucleoside that forms in DNA a stable self-pair upon complexation of a Cu(II) ion. A sequence with five consecutive pyrazole nucleotides allows the complexation of five Cu(II) ions in a row.
Collapse
Affiliation(s)
- M Su
- Department of Chemistry, Ludwig-Maximilians University, Butenandtstraße 5-13, 81377, Munich, Germany.
| | | | | | | | | |
Collapse
|
12
|
Samanta PK, Pati SK. Structural and magnetic properties of a variety of transition metal incorporated DNA double helices. Chemistry 2013; 20:1760-4. [PMID: 24382746 DOI: 10.1002/chem.201302628] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/30/2013] [Indexed: 12/22/2022]
Abstract
By using density functional theory calculations, the structural, energetic, magnetic, and optical properties for a variety of transition metal (M = Mn, Fe, Co, Ni and Cu) ions incorporated modified-DNA (M-DNA) double helices has been investigated. The DNA is modified with either hydroxypyridone (H) or bis(salicylaldehyde)ethylenediamine (S-en) metalated bases. We find the formation of extended M-O network leading to the ferromagnetic interactions for the case of H-DNA for all the metal ions. More ordered stacking arrangement was found for S-en-DNA. We calculate the exchange coupling constant (J) considering Heisenberg Hamiltonian for quantitative description of magnetic interactions. The ferromagnetic and antiferromagnetic interactions are obtained by varying different transition metal ions. The extent of the magnetic interaction depends on the number of transition metal ions. Optical profiles show peaks below 2 eV, a clear signature of spin-spin coupling.
Collapse
Affiliation(s)
- Pralok K Samanta
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064 (India), Fax: (+91) 80-2208-2766/2767, Hompage: http://www.jncasr.ac.in/pati
| | | |
Collapse
|
13
|
Kumbhar S, Johannsen S, Sigel RK, Waller MP, Müller J. A QM/MM refinement of an experimental DNA structure with metal-mediated base pairs. J Inorg Biochem 2013; 127:203-10. [DOI: 10.1016/j.jinorgbio.2013.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/18/2013] [Accepted: 03/18/2013] [Indexed: 01/04/2023]
|
14
|
|
15
|
Samanta PK, Pati SK. Structural, electronic and photophysical properties of analogous RNA nucleosides: a theoretical study. NEW J CHEM 2013. [DOI: 10.1039/c3nj00633f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|