1
|
Cao J, Chen X, Ma X, Zhang T, Sun W. Theoretical study on the photophysical properties of thiophene-fused-type BODIPY series molecules in fluorescence imaging and photodynamic therapy. Phys Chem Chem Phys 2024; 26:21520-21529. [PMID: 39082090 DOI: 10.1039/d4cp01346h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
As a class of photosensitizers (PSs) with dual functions of photodynamic therapy (PDT) and fluorescence imaging, the relationship between the structure and dual-function of thiophene-fused-type BODIPY dyes has not been studied in depth before. We found that the thiophene-fused-type BODIPY triplet photosensitizer is produced according to the energy level matching rule and the introduction of the thiophene ring significantly reduces the energy gap ΔEST between singlet and triplet states, as revealed by our investigation of the excited state structures and energies of thieno-fused BODIPY dyes. At the same time, a tiny ΔEST also results in a greatly enhanced intersystem crossing (ISC) rate, kISC. The kISC value of MeO-BODIPY, having the highest singlet oxygen quantum yield (ΦΔ), is the largest. Substitution with a strong electron donor N,N-dimethylaminophenyl (DMA) leads to the vertical configuration in the T1 state. The small ΔE (0.0029 eV) between the HOMO and HOMO-1 triggers the photo induced electron transfer (PET) of inhibiting ISC and fluorescence. When thieno-fused BODIPYs react with pyrrole, the increase of π-conjugation and smaller ΔEHOMO-LUMO explain the redshift in emission wavelength of thieno-pyrrole-fused BODIPY. The more planar configuration of the S1 state and the stronger oscillator intensity reflect a higher fluorescence quantum yield (ΦF). The extension of π-conjugation can cause molecules to transition to higher-level singlet excited states (Sn states, n ≥ 1) after absorbing energy and reduce the energy level of the excited state, resulting in multiple channels and favoring 1O2 production for thieno-pyrrole-fused BODIPYs with electron-withdrawing groups at the para-position of the phenyl groups. Due to ΔES0-T1 < 0.980 eV, the substitution of electron-donating groups cannot produce 1O2. In this work, we have revealed the mechanism of ISC and the fluorescence emission process in the thiophene-fused-type BODIPY dye, which has provided a theoretical foundation and guidance for the future design of BODIPY-based heavy-atom-free PSs for molecular applications in PDT.
Collapse
Affiliation(s)
- Jianfang Cao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin Campus, Panjin, 124221, China.
| | - Xinyu Chen
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin Campus, Panjin, 124221, China.
| | - Xue Ma
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin Campus, Panjin, 124221, China.
| | - Tianci Zhang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin Campus, Panjin, 124221, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian, 116024, China.
| |
Collapse
|
2
|
Pham TC, Cho M, Nguyen VN, Nguyen VKT, Kim G, Lee S, Dehaen W, Yoon J, Lee S. Charge Transfer-Promoted Excited State of a Heavy-Atom-Free Photosensitizer for Efficient Application of Mitochondria-Targeted Fluorescence Imaging and Hypoxia Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21699-21708. [PMID: 38634764 DOI: 10.1021/acsami.4c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Conventional photosensitizers (PSs) used in photodynamic therapy (PDT) have shown preliminary success; however, they are often associated with several limitations including potential dark toxicity in healthy tissues, limited efficacy under acidic and hypoxic conditions, suboptimal fluorescence imaging capabilities, and nonspecific targeting during treatment. In response to these challenges, we developed a heavy-atom-free PS, denoted as Cz-SB, by incorporating ethyl carbazole into a thiophene-fused BODIPY core. A comprehensive investigation into the photophysical properties of Cz-SB was conducted through a synergistic approach involving experimental and computational investigations. The enhancement of intersystem crossing (kISC) and fluorescence emission (kfl) rate constants was achieved through a donor-acceptor pair-mediated charge transfer mechanism. Consequently, Cz-SB demonstrated remarkable efficiency in generating reactive oxygen species (ROS) under acidic and low-oxygen conditions, making it particularly effective for hypoxic cancer PDT. Furthermore, Cz-SB exhibited good biocompatibility, fluorescence imaging capabilities, and a high degree of localization within the mitochondria of living cells. We posit that Cz-SB holds substantial prospects as a versatile PS with innovative molecular design, representing a potential "one-for-all" solution in the realm of cancer phototheranostics.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Moonyeon Cho
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Van Kieu Thuy Nguyen
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Seongman Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| | - Wim Dehaen
- Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Songyi Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
3
|
Fu X, Man Y, Yu C, Sun Y, Hao E, Wu Q, Hu A, Li G, Wang CC, Li J. Unsymmetrical Benzothieno-Fused BODIPYs as Efficient NIR Heavy-Atom-Free Photosensitizers. J Org Chem 2024; 89:4826-4839. [PMID: 38471124 DOI: 10.1021/acs.joc.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Heavy-atom-free photosensitizers are potentially suitable for use in photodynamic therapy (PDT). In this contribution, a new family of unsymmetrical benzothieno-fused BODIPYs with reactive oxygen efficiency up to 50% in air-saturated toluene was reported. Their efficient intersystem crossing (ISC) resulted in the generation of both 1O2 and O2-• under irradiation. More importantly, the PDT efficacy of a respective 4-methoxystyryl-modified benzothieno-fused BODIPY in living cells exhibited an extremely high phototoxicity with an ultralow IC50 value of 2.78 nM. The results revealed that the incorporation of an electron-donating group at the α-position of the unsymmetrical benzothieno-fused BODIPY platform might be an effective approach for developing long-wavelength absorbing heavy-atom-free photosensitizers for precision cancer therapy.
Collapse
Affiliation(s)
- Xiaofan Fu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yingxiu Man
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yingzhu Sun
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Anzhi Hu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Guangyao Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Chang-Cheng Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jiazhu Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
4
|
Xu J, Zhang Y, Liu J, Wang L. NIR-II Absorbing Monodispersed Oligomers Based on N-B←N Unit. Angew Chem Int Ed Engl 2023; 62:e202310838. [PMID: 37635075 DOI: 10.1002/anie.202310838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Organic molecules with near-infrared II (NIR II) light absorption are essential for many biological and opto-electronic applications. Herein, we report monodispersed oligomers as NIR II light absorber using a new molecular design strategy of resonant N-B←N unit, i.e. balanced resonant boron-nitrogen covalent bond (B-N) and boron-nitrogen coordination bond (B←N). We synthesize a series of monodispersed oligomers with thiophene-fused 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (TB), which contains resonant N-B←N unit, as the repeating unit. The TB pentamer exhibits the maximum absorption wavelength of 1169 nm, which is the longest for oligomers reported so far. Organic photodetectors (OPDs) with the TB tetramer as the electron acceptor shows the specific detectivity of 2.98×1011 Jones at 1180 nm under zero bias. This performance is among the best for NIR II OPDs. These results indicate a new kind of NIR II absorbing molecules as excellent opto-electronic materials.
Collapse
Affiliation(s)
- Jin Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yingze Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
5
|
Application of meso-CF 3-Fluorophore BODIPY with Phenyl and Pyrazolyl Substituents for Lifetime Visualization of Lysosomes. Molecules 2022; 27:molecules27155018. [PMID: 35956971 PMCID: PMC9370186 DOI: 10.3390/molecules27155018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
A bright far-red emitting unsymmetrical meso-CF3-BODIPY fluorescent dye with phenyl and pyrazolyl substituents was synthesized by condensation of trifluoropyrrolylethanol with pyrazolyl-pyrrole, with subsequent oxidation and complexation of the formed dipyrromethane. This BODIPY dye exhibits optical absorption at λab ≈ 610-620 nm and emission at λem ≈ 640-650 nm. The BODIPY was studied on Ehrlich carcinoma cells as a lysosome-specific fluorescent dye that allows intravital staining of cell structures with subsequent real-time monitoring of changes occurring in the cells. It was also shown that the rate of uptake by cells, the rate of intracellular transport into lysosomes, and the rate of saturation of cells with the dye depend on its concentration in the culture medium. A concentration of 5 μM was chosen as the most suitable BODIPY concentration for fluorescent staining of living cell lysosomes, while a concentration of 100 μM was found to be toxic to Ehrlich carcinoma cells.
Collapse
|
6
|
Synthesis and photoinduced charge stabilization in molecular tetrads featuring covalently linked triphenylamine-oligothiophene-BODIPY-C60. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Sun Y, Yu XA, Yang J, Gai L, Tian J, Sui X, Lu H. NIR halogenated thieno[3, 2-b]thiophene fused BODIPYs with photodynamic therapy properties in HeLa cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119027. [PMID: 33068896 DOI: 10.1016/j.saa.2020.119027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Commonly, an efficient photosensitizer usually requires a number of excellent properties, such as a larger molar absorption coefficient in the tissue transparency window, a high intersystem spin-crossing (ISC) probability induced by heavy atom and low dark toxicity as well as high photostability. In this study, NIR tetra-bromo thieno[3,2-b]thiophene-fused BODIPYs derivatives 3 was prepared, and fully characterized. Their photophysical properties have been well investigated including absorption, fluorescence profiles and photostability. The novel BODIPYs 2-3 possess long wavelength absorptions of maximum up to 720 nm with large molar absorption coefficients due to extend the effect of π-conjugation system via fusion the thieno[3,2-b]thiophene group. Especially, BODIPY 3 containing heavy atoms (four bromine atoms) exhibits photocytotoxicity upon irradiation with light NIR laser based on the results of MTT assays and flow analyses in living HeLa cells, in the meanwhile, it features lower cytotoxic in the dark. The current research work will contribute to the development of functional dyes and new organic NIR photosensitizer agents.
Collapse
Affiliation(s)
- Yijuan Sun
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, PR China
| | - Xie-An Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jie Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, PR China
| | - Lizhi Gai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, PR China.
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Xinbing Sui
- College of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, PR China
| |
Collapse
|
8
|
Králová J, Jurášek M, Mikšátková L, Marešová A, Fähnrich J, Cihlářová P, Drašar P, Bartůněk P, Král V. Influence of fluorophore and linker length on the localization and trafficking of fluorescent sterol probes. Sci Rep 2020; 10:22053. [PMID: 33328481 PMCID: PMC7745015 DOI: 10.1038/s41598-020-78085-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022] Open
Abstract
Fluorescent sterol probes, comprising a fluorophore connected to a sterol backbone by means of a linker, are promising tools for enabling high-resolution imaging of intracellular cholesterol. In this study, we evaluated how the size of the linker, site of its attachment and nature of the fluorophore, affect the localization and trafficking properties of fluorescent sterol probes. Varying lengths of linker using the same fluorophore affected cell penetration and retention in specific cell compartments. A C-4 linker was confirmed as optimal. Derivatives of heterocyclic sterol precursors attached with identical C-4 linker to different fluorophores at diverse positions also showed significant differences in their binding properties to various intracellular compartments and kinetics of trafficking. Two novel red-emitting probes with good cell permeability, fast intracellular labelling and slightly different distribution displayed very promising characteristics for sterol probes. These probes also strongly labelled endo/lysosomal compartment in cells with pharmacologically disrupted cholesterol transport, or with a genetic mutation of cholesterol transporting protein NPC1, that overlapped with filipin staining of cholesterol. Overall, the present study demonstrates that the physicochemical properties of the fluorophore/linker pairing determine the kinetics of uptake and distribution and subsequently influence the applicability of final probes.
Collapse
Affiliation(s)
- Jarmila Králová
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Michal Jurášek
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Lucie Mikšátková
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Anna Marešová
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Jan Fähnrich
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Petra Cihlářová
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Pavel Drašar
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Petr Bartůněk
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Vladimír Král
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
9
|
Dukh M, Tabaczynski WA, Seetharaman S, Ou Z, Kadish KM, D'Souza F, Pandey RK. meso
‐ and β‐Pyrrole‐Linked Chlorin‐Bacteriochlorin Dyads for Promoting Far‐Red FRET and Singlet Oxygen Production. Chemistry 2020; 26:14996-15006. [DOI: 10.1002/chem.202003042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Mykhaylo Dukh
- PDT Center Cell Stress Biology Roswell Park Cancer Institute Buffalo NY 14263 USA
| | | | - Sairaman Seetharaman
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Zhongping Ou
- Department of Chemistry University of Houston Houston TX 77204 USA
| | - Karl M. Kadish
- Department of Chemistry University of Houston Houston TX 77204 USA
| | - Francis D'Souza
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Ravindra K. Pandey
- PDT Center Cell Stress Biology Roswell Park Cancer Institute Buffalo NY 14263 USA
| |
Collapse
|
10
|
Chinna Ayya Swamy P, Sivaraman G, Priyanka RN, Raja SO, Ponnuvel K, Shanmugpriya J, Gulyani A. Near Infrared (NIR) absorbing dyes as promising photosensitizer for photo dynamic therapy. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213233] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Zhang Z, Yuan D, Liu X, Kim MJ, Nashchadin A, Sharapov V, Yu L. BODIPY-Containing Polymers with Ultralow Band Gaps and Ambipolar Charge Mobilities. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zhen Zhang
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Dafei Yuan
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Xunshan Liu
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Mi-Jeong Kim
- Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Limited, Seoul, South Korea
| | - Andriy Nashchadin
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Valerii Sharapov
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Luping Yu
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Qi S, Kwon N, Yim Y, Nguyen VN, Yoon J. Fine-tuning the electronic structure of heavy-atom-free BODIPY photosensitizers for fluorescence imaging and mitochondria-targeted photodynamic therapy. Chem Sci 2020; 11:6479-6484. [PMID: 34094113 PMCID: PMC8152625 DOI: 10.1039/d0sc01171a] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 12/28/2022] Open
Abstract
Theranostics that combines both diagnosis and therapy into a single platform has recently emerged as a promising biomedical approach for cancer treatment; however, the development of efficient theranostic agents with excellent optical properties remains a challenge. Here, we report novel mitochondria-targeting BODIPY photosensitizers (R-BODs) that possess considerable singlet oxygen generation capabilities and good fluorescence properties for imaging-guided photodynamic therapy (PDT). The incorporation of sulfur atoms into the π-conjugated skeleton of BODIPY along with the introduction of different functional groups at the meso-position of the BODIPY core is essential for tuning the photophysical and photosensitizing properties. Notably, the MeOPh-substituted thiophene-fused BODIPY (MeO-BOD, R = p-methoxyphenyl) displayed the highest singlet oxygen generation capability (Φ Δ ≈ 0.85 in air-saturated acetonitrile) and a moderate fluorescence quantum yield (Φ f = 17.11). Furthermore, MeO-BOD showed good biocompatibility, low dark toxicity and superior fluorescence imaging properties in living cells. More importantly, the PDT efficacy of mitochondria-specific anchoring of MeO-BOD was remarkably amplified with an extremely low half-maximal inhibitory concentration (IC50) value of 95 nM. We believe that the incorporation of an electron-donating group at the meso-position of the thiophene-fused BODIPY platform may be an effective approach for developing theranostic agents for precision cancer therapy.
Collapse
Affiliation(s)
- Sujie Qi
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Republic of Korea
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Republic of Korea
| | - Yubin Yim
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Republic of Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Republic of Korea
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
13
|
Asymmetric meso-CF3-dipyrromethanes with amino- and heterocyclic functions from trifluoro(pyrrolyl)ethanols and pyrroles. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Bodio E, Denat F, Goze C. BODIPYS and aza-BODIPY derivatives as promising fluorophores for in vivo molecular imaging and theranostic applications. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501268] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since their discovery in 1968, the BODIPYs dyes (4,4-difluoro-4-bora-3a, 4a diaza-s-indacene) have found an exponentially increasing number of applications in a large variety of scientific fields. In particular, studies reporting bioapplications of BODIPYs have increased dramatically. However, most of the time, only in vitro investigations have been reported. The in vivo potential of BODIPYs and aza-BODIPYs is more recent, but considering the number of in vivo studies with BODIPY and aza-BODIPY which have been reported in the last five years, we can now affirm that this family of fluorophores can be considered important as cyanine dyes for future in vivo and even clinical applications. This review aims to present representative examples of recent in vivo applications of BODIPYs or aza-BODIPYs, and to highlight the potential of these dyes for optical molecular imaging.
Collapse
Affiliation(s)
- Ewen Bodio
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon Cedex, France
| | - Franck Denat
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon Cedex, France
| | - Christine Goze
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon Cedex, France
| |
Collapse
|
15
|
BODIPYs in antitumoral and antimicrobial photodynamic therapy: An integrating review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Diaz-Rodriguez RM, Robertson KN, Thompson A. Classifying donor strengths of dipyrrinato/aza-dipyrrinato ligands. Dalton Trans 2019; 48:7546-7550. [PMID: 31070213 DOI: 10.1039/c9dt01148j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A parameter is reported by which to use 13C NMR chemical shifts to measure and predict the donor capabilities of N^N dipyrrinato and aza-dipyrrinato ligands chelating in L^X fashion. The results enable the rationalisation of the properties of these ligands and their complexes, as well as enable rational design incorporating both steric and electronic considerations when tuning to effect desired applications. Complexes containing these ligands are prevalent due to their desirable photophysical properties such as high chemical stability, resistance to photodegradation, strong absorbance, and ease of chemical modifiability.
Collapse
Affiliation(s)
- Roberto M Diaz-Rodriguez
- Department of Chemistry, Dalhousie University, PO BOX 15000, Halifax, Nova Scotia B3H 4R2, Canada.
| | | | | |
Collapse
|
17
|
Didukh NO, Yakubovskyi VP, Zatsikha YV, Rohde GT, Nemykin VN, Kovtun YP. Flexible BODIPY Platform That Offers an Unexpected Regioselective Heterocyclization Reaction toward Preparation of 2-Pyridone[a]-Fused BODIPYs. J Org Chem 2019; 84:2133-2147. [DOI: 10.1021/acs.joc.8b03119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Natalia O. Didukh
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., 02660 Kyiv, Ukraine
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Viktor P. Yakubovskyi
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., 02660 Kyiv, Ukraine
| | - Yuriy V. Zatsikha
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Victor N. Nemykin
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yuriy P. Kovtun
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., 02660 Kyiv, Ukraine
| |
Collapse
|
18
|
Turksoy A, Yildiz D, Akkaya EU. Photosensitization and controlled photosensitization with BODIPY dyes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2017.09.029] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Kubota Y, Kimura K, Jin J, Manseki K, Funabiki K, Matsui M. Synthesis of near-infrared absorbing and fluorescing thiophene-fused BODIPY dyes with strong electron-donating groups and their application in dye-sensitised solar cells. NEW J CHEM 2019. [DOI: 10.1039/c8nj04672g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thiophene-fused BODIPY dyes with two diethylaminophenyl groups as strong donors demonstrated near-infrared (NIR) absorption (λmax: 783–812 nm, ε: 119 500–145 900) and fluorescence (Fmax: 862–916 nm, Φf: 0.02–0.12) in dichloromethane.
Collapse
Affiliation(s)
- Yasuhiro Kubota
- Department of Materials Science and Technology, Faculty of Engineering, Gifu University
- Yanagido
- Japan
| | - Kosei Kimura
- Department of Materials Science and Technology, Faculty of Engineering, Gifu University
- Yanagido
- Japan
| | - Jiye Jin
- Department of Chemistry, Faculty of Science, Shinshu University
- Matsumoto
- Japan
| | - Kazuhiro Manseki
- Department of Materials Science and Technology, Faculty of Engineering, Gifu University
- Yanagido
- Japan
| | - Kazumasa Funabiki
- Department of Materials Science and Technology, Faculty of Engineering, Gifu University
- Yanagido
- Japan
| | - Masaki Matsui
- Department of Materials Science and Technology, Faculty of Engineering, Gifu University
- Yanagido
- Japan
| |
Collapse
|
20
|
Cui J, Sheng W, Wu Q, Yu C, Hao E, Bobadova-Parvanova P, Storer M, Asiri AM, Marwani HM, Jiao L. Synthesis, Structure, and Properties of Near-Infrared [b]Phenanthrene-Fused BF 2 Azadipyrromethenes. Chem Asian J 2017; 12:2486-2493. [PMID: 28730703 DOI: 10.1002/asia.201700876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/18/2017] [Indexed: 02/06/2023]
Abstract
A new class of phenanthrene-fused BF2 azadipyrromethene (azaBODIPY) dyes have been synthesized through a tandem Suzuki reaction and oxidative ring-fusion reaction, or a palladium-catalyzed intramolecular C-H activation reaction. These phenanthrene-fused azaBODIPY dyes are highly photostable and display markedly redshifted absorption (up to λ=771 nm) and emission bands (λ≈800 nm) in the near-infrared region. DFT calculations and cyclic voltammetry studies indicate that, upon annulation, more pronounced stabilization of the LUMO is the origin of the bathochromic shift of the absorption and high photostability.
Collapse
Affiliation(s)
- Jiuen Cui
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| | - Wanle Sheng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| | | | - Marie Storer
- Department of Chemistry, Rockhurst University, 1100 Rockhurst Rd, Kansas City, MO, 64110, USA
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| |
Collapse
|
21
|
Petrushenko KB, Petrushenko IK, Petrova OV, Sobenina LN, Ushakov IA, Trofimov BA. Environment-Responsive 8-CF3-BODIPY Dyes with Aniline Groups at the 3 Position: Synthesis, Optical Properties and RI-CC2 Calculations. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Igor K. Petrushenko
- Physical and Technical Institute; Irkutsk National Research Technical University; 664074 Irkutsk Russia
| | - Olga V. Petrova
- A. E. Favorsky Irkutsk Institute of Chemistry; Russian Academy of Sciences; 664033 Irkutsk Russia
| | - Lyubov N. Sobenina
- A. E. Favorsky Irkutsk Institute of Chemistry; Russian Academy of Sciences; 664033 Irkutsk Russia
| | - Igor A. Ushakov
- A. E. Favorsky Irkutsk Institute of Chemistry; Russian Academy of Sciences; 664033 Irkutsk Russia
| | - Boris A. Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry; Russian Academy of Sciences; 664033 Irkutsk Russia
| |
Collapse
|
22
|
Synthesis and Optical Properties ofmeso-CF3-BODIPY with Acylethynyl Substituents in the 3-Position of the Indacene Core. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600303] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Yu C, Wu Q, Wang J, Wei Y, Hao E, Jiao L. Red to Near-Infrared Isoindole BODIPY Fluorophores: Synthesis, Crystal Structures, and Spectroscopic and Electrochemical Properties. J Org Chem 2016; 81:3761-70. [DOI: 10.1021/acs.joc.6b00414] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Changjiang Yu
- The Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Qinghua Wu
- The Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Jun Wang
- The Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yun Wei
- The Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Erhong Hao
- The Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Lijuan Jiao
- The Key Laboratory of Functional
Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
24
|
Turan IS, Yildiz D, Turksoy A, Gunaydin G, Akkaya EU. A Bifunctional Photosensitizer for Enhanced Fractional Photodynamic Therapy: Singlet Oxygen Generation in the Presence and Absence of Light. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511345] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ilke Simsek Turan
- UNAM-National Nanotechnology Research Center; Bilkent University; 06800 Ankara Turkey
| | - Deniz Yildiz
- Department of Chemistry; Bilkent University; 06800 Ankara Turkey
| | | | - Gurcan Gunaydin
- Department of Basic Oncology; Hacettepe University; 06100 Ankara Turkey
| | - Engin U. Akkaya
- UNAM-National Nanotechnology Research Center; Bilkent University; 06800 Ankara Turkey
- Department of Chemistry; Bilkent University; 06800 Ankara Turkey
| |
Collapse
|
25
|
Turan IS, Yildiz D, Turksoy A, Gunaydin G, Akkaya EU. A Bifunctional Photosensitizer for Enhanced Fractional Photodynamic Therapy: Singlet Oxygen Generation in the Presence and Absence of Light. Angew Chem Int Ed Engl 2016; 55:2875-8. [PMID: 26799149 DOI: 10.1002/anie.201511345] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 12/14/2022]
Abstract
The photosensitized generation of singlet oxygen within tumor tissues during photodynamic therapy (PDT) is self-limiting, as the already low oxygen concentrations within tumors is further diminished during the process. In certain applications, to minimize photoinduced hypoxia the light is introduced intermittently (fractional PDT) to allow time for the replenishment of cellular oxygen. This condition extends the time required for effective therapy. Herein, we demonstrated that a photosensitizer with an additional 2-pyridone module for trapping singlet oxygen would be useful in fractional PDT. Thus, in the light cycle, the endoperoxide of 2-pyridone is generated along with singlet oxygen. In the dark cycle, the endoperoxide undergoes thermal cycloreversion to produce singlet oxygen, regenerating the 2-pyridone module. As a result, the photodynamic process can continue in the dark as well as in the light cycles. Cell-culture studies validated this working principle in vitro.
Collapse
Affiliation(s)
- Ilke Simsek Turan
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Deniz Yildiz
- Department of Chemistry, Bilkent University, 06800, Ankara, Turkey
| | | | - Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University, 06100, Ankara, Turkey
| | - Engin U Akkaya
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey. .,Department of Chemistry, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
26
|
Yamazawa S, Nakashima M, Suda Y, Nishiyabu R, Kubo Y. 2,3-Naphtho-Fused BODIPYs as Near-Infrared Absorbing Dyes. J Org Chem 2016; 81:1310-5. [DOI: 10.1021/acs.joc.5b02720] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sho Yamazawa
- Department of Applied Chemistry,
Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Mika Nakashima
- Department of Applied Chemistry,
Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Yukie Suda
- Department of Applied Chemistry,
Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Ryuhei Nishiyabu
- Department of Applied Chemistry,
Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Yuji Kubo
- Department of Applied Chemistry,
Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
27
|
Wang J, Li J, Chen N, Wu Y, Hao E, Wei Y, Mu X, Jiao L. Synthesis, structure and properties of thiophene-fused BODIPYs and azaBODIPYs as near-infrared agents. NEW J CHEM 2016. [DOI: 10.1039/c6nj01011c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Annulation of thiophene to the BODIPY/aza-BODIPY core showed a significant impact on the spectral properties of the resulting scaffolds.
Collapse
Affiliation(s)
- Jun Wang
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Jin Li
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Na Chen
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Yayang Wu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Yun Wei
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Xiaolong Mu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
28
|
Ooyama Y, Enoki T, Ohshita J. Development of a D–π–A pyrazinium photosensitizer possessing singlet oxygen generation. RSC Adv 2016. [DOI: 10.1039/c5ra26647e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
(D–π–)2A pyrazinium dyes (OEJ-1 and OEJ-2) bearing a counter anion (X− = Br− or I−) have been newly developed as a photosensitizer possessing singlet oxygen (1O2) generation.
Collapse
Affiliation(s)
- Yousuke Ooyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Toshiaki Enoki
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Joji Ohshita
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| |
Collapse
|
29
|
Wang J, Wu Q, Xu Y, Yu C, Wei Y, Mu X, Hao E, Jiao L. Synthesis, structure and photophysical properties of near-infrared 3,5-diarylbenzoBODIPY fluorophores. RSC Adv 2016. [DOI: 10.1039/c6ra04412c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
An efficient synthetic method for 3,5-diarylbenzoBODIPYs was reported, which showed tunable absorption/emission via the variation of the 3,5-aryl substituents.
Collapse
Affiliation(s)
- Jun Wang
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Yajun Xu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Yun Wei
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Xiaolong Mu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
30
|
Kumar S, Gobeze HB, Chatterjee T, D’Souza F, Ravikanth M. Directly Connected AzaBODIPY–BODIPY Dyad: Synthesis, Crystal Structure, and Ground- and Excited-State Interactions. J Phys Chem A 2015; 119:8338-48. [DOI: 10.1021/acs.jpca.5b06328] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sunit Kumar
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Habtom B. Gobeze
- Department
of Chemistry, University of North Texas, 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Tamal Chatterjee
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Francis D’Souza
- Department
of Chemistry, University of North Texas, 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | | |
Collapse
|
31
|
Zhou X, Wu Q, Feng Y, Yu Y, Yu C, Hao E, Wei Y, Mu X, Jiao L. Tandem Regioselective Substitution and Palladium-Catalyzed Ring Fusion Reaction for Core-Expanded Boron Dipyrromethenes with Red-Shifted Absorption and Intense Fluorescence. Chem Asian J 2015; 10:1979-86. [DOI: 10.1002/asia.201500516] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Xin Zhou
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| | - Yuanmei Feng
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| | - Yang Yu
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| | - Yun Wei
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| | - Xiaolong Mu
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| |
Collapse
|
32
|
Watley RL, Awuah SG, Bio M, Cantu R, Gobeze HB, Nesterov VN, Das SK, D'Souza F, You Y. Dual Functioning Thieno-Pyrrole Fused BODIPY Dyes for NIR Optical Imaging and Photodynamic Therapy: Singlet Oxygen Generation without Heavy Halogen Atom Assistance. Chem Asian J 2015; 10:1335-43. [PMID: 25779683 PMCID: PMC7297209 DOI: 10.1002/asia.201500140] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 11/12/2022]
Abstract
We discovered a rare phenomenon wherein a thieno-pyrrole fused BODIPY dye (SBDPiR690) generates singlet oxygen without heavy halogen atom substituents. SBDPiR690 generates both singlet oxygen and fluorescence. To our knowledge, this is the first example of such a finding. To establish a structure-photophysical property relationship, we prepared SBDPiR analogs with electron-withdrawing groups at the para-position of the phenyl groups. The electron-withdrawing groups increased the HOMO-LUMO energy gap and singlet oxygen generation. Among the analogs, SBDPiR688, a CF3 analog, had an excellent dual functionality of brightness (82290 m(-1) cm(-1) ) and phototoxic power (99170 m(-1) cm(-1) ) comparable to those of Pc 4, due to a high extinction coefficient (211 000 m(-1) cm(-1) ) and balanced decay (Φflu =0.39 and ΦΔ =0.47). The dual functionality of the lead compound SBDPiR690 was successfully applied to preclinical optical imaging and for PDT to effectively control a subcutaneous tumor.
Collapse
Affiliation(s)
- Ryan L Watley
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 North Stonewall Ave, Oklahoma City, OK, 73117, USA
| | - Samuel G Awuah
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 North Stonewall Ave, Oklahoma City, OK, 73117, USA
| | - Moses Bio
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 North Stonewall Ave, Oklahoma City, OK, 73117, USA
| | - Robert Cantu
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA
| | - Habtom B Gobeze
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA
| | - Vladimir N Nesterov
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA
| | - Sushanta K Das
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA.
| | - Youngjae You
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 North Stonewall Ave, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
33
|
Dai E, Pang W, Zhang XF, Yang X, Jiang T, Zhang P, Yu C, Hao E, Wei Y, Mu X, Jiao L. Synthesis and Photophysics of BF2-Rigidified Partially Closed Chain Bromotetrapyrroles: Near Infrared Emitters and Photosensitizers. Chem Asian J 2015; 10:1327-34. [DOI: 10.1002/asia.201500118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 12/18/2022]
Affiliation(s)
- En Dai
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| | - Weidong Pang
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| | - Xian-Fu Zhang
- Chemistry Department; Hebei Normal University of Science&Technology, Qinhuangdao; Hebei 066004 China
| | - Xudong Yang
- Chemistry Department; Hebei Normal University of Science&Technology, Qinhuangdao; Hebei 066004 China
| | - Ting Jiang
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| | - Ping Zhang
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| | - Yun Wei
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| | - Xiaolong Mu
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids; Ministry of Education; Anhui Key Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 China
| |
Collapse
|
34
|
Synthesis of 5-Trifluoroacetylpyrrole-2-Carbaldehydes*. Chem Heterocycl Compd (N Y) 2014. [DOI: 10.1007/s10593-014-1548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Bandi V, Das SK, Awuah SG, You Y, D’Souza F. Thieno-Pyrrole-Fused 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene–Fullerene Dyads: Utilization of Near-Infrared Sensitizers for Ultrafast Charge Separation in Donor–Acceptor Systems. J Am Chem Soc 2014; 136:7571-4. [DOI: 10.1021/ja503015f] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Venugopal Bandi
- Department
of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Sushanta K. Das
- Department
of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Samuel G. Awuah
- Department
of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Youngjae You
- Department
of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Francis D’Souza
- Department
of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| |
Collapse
|
36
|
Bessette A, Hanan GS. Design, synthesis and photophysical studies of dipyrromethene-based materials: insights into their applications in organic photovoltaic devices. Chem Soc Rev 2014; 43:3342-405. [PMID: 24577078 DOI: 10.1039/c3cs60411j] [Citation(s) in RCA: 351] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review article presents the most recent developments in the use of materials based on dipyrromethene (DPM) and azadipyrromethenes (ADPM) for organic photovoltaic (OPV) applications. These chromophores and their corresponding BF2-chelated derivatives BODIPY and aza-BODIPY, respectively, are well known for fluorescence-based applications but are relatively new in the field of photovoltaic research. This review examines the variety of relevant designs, synthetic methodologies and photophysical studies related to materials that incorporate these porphyrinoid-related dyes in their architecture. The main idea is to inspire readers to explore new avenues in the design of next generation small-molecule and bulk-heterojunction solar cell (BHJSC) OPV materials based on DPM chromophores. The main concepts are briefly explained, along with the main challenges that are to be resolved in order to take full advantage of solar energy.
Collapse
Affiliation(s)
- André Bessette
- Département de Chimie, Université de Montréal, Pavillon J.-A. Bombardier, 5155 Decelles Avenue, Montréal, Québec H3T-2B1, Canada.
| | | |
Collapse
|
37
|
Moriarty RD, Martin A, Adamson K, O'Reilly E, Mollard P, Forster RJ, Keyes TE. The application of water soluble, mega-Stokes-shifted BODIPY fluorophores to cell and tissue imaging. J Microsc 2014; 253:204-18. [PMID: 24467513 DOI: 10.1111/jmi.12111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 12/20/2013] [Indexed: 01/30/2023]
Abstract
BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophores are widely used in bioimaging to label proteins, lipids and nucleotides, but in spite of their attractive optical properties they tend to be prone to self-quenching because of their notably small Stokes shift. Herein, we compare two BODIPY compounds from a recently developed family of naphthyridine substituted BODIPY derivatives, one a visible emitting derivative (BODIPY-VIS) and one a near-infrared emitting fluorophore with a Stokes shift of approximately 165 nm as contrast reagents for live mammalian cells and murine brain tissue. The compounds were rendered water soluble by their conjugation to polyethylene glycol (PEG). Both PEGylated compounds exhibited good cell uptake compared with their parent compounds and confocal fluorescence microscopy revealed all dyes explored to be nuclear excluding, localizing predominantly within the lipophilic organelles; the endoplasmic reticulum and mitochondria. Cytotoxicity studies revealed that these BODIPY derivatives are modestly cytotoxic at concentrations exceeding 10 μM where they induce apoptosis and necrosis. Although the quantum yield of emission of the visible emitting fluorophore was over an order of magnitude greater than the Mega-Stokes shifted probe, the latter showed considerably reduced tendency to self quench and less interference from autofluorescence. The near-infrared probe also showed good penetrability and staining in live tissue samples. In the latter case similar tendency to exclude the nucleus and to localize in the mitochondria and endoplasmic reticulum was observed as in live cells. This to our knowledge is the first demonstration of such a Mega-Stokes BODIPY probe applied to cell and tissue imaging.
Collapse
Affiliation(s)
- R D Moriarty
- National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | | | | | | | | | | | | |
Collapse
|