1
|
Lütjohann C, Näther C, Lindhorst TK. Ready chemistry with a rare sugar: Altrobioside synthesis and analysis of conformational characteristics. Carbohydr Res 2024; 544:109228. [PMID: 39153326 DOI: 10.1016/j.carres.2024.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
We describe the synthesis of the full set of the so far unknown methyl altrobiosides and the initial analysis of the conformational dynamic which occurs in some of the synthesized compounds. d-Altrose chemistry has largely been neglected as it is a rare sugar and has first to be synthesized from glucose or mannose, respectively. Nevertheless, d-altrose is particularly interesting as the energy barrier between the complementary chair conformations is rather low and therefore dynamic mixtures of conformers might occur. We describe the ready synthesis of the selectively protected altrosyl acceptors for the glycosidation from d-mannose and the altrosyl-trichloroacetimidate as useful glycosyl donor to achieve the (1 → 2), (1 → 3), (1 → 4), and (1 → 6)-α-linked altrobiosides. The diastereomeric α- and β-O-(d-altropyranosyl)-trichloroacetimidates adopt different ring conformations as analyzed by NMR and VCD spectroscopy. Also, the pyranose ring conformations of the obtained altrobiosides apparently differ from a regular 4C1 chair according to NMR analysis and are influenced by the regiochemistry of the interglycosidic linkage.
Collapse
Affiliation(s)
- Clemens Lütjohann
- Christiana Albertina University of Kiel, Otto Diels Institute of Organic Chemistry, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| | - Christian Näther
- Christiana Albertina University of Kiel, Institute of Inorganic Chemistry, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Thisbe K Lindhorst
- Christiana Albertina University of Kiel, Otto Diels Institute of Organic Chemistry, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany.
| |
Collapse
|
2
|
Jaeschke SO, Lindhorst TK, Auer A. Between Two Chairs: Combination of Theory and Experiment for the Determination of the Conformational Dynamics of Xylosides. Chemistry 2022; 28:e202201544. [PMID: 35754398 PMCID: PMC9804333 DOI: 10.1002/chem.202201544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 01/05/2023]
Abstract
The conformational properties of monosaccharides constitute fundamental features of oligosaccharides. While the energy landscape of monosaccharides can be altered by a specific biochemical environment or by chemical modifications, the analysis of resulting dynamic conformational equilibria is not feasible by experimental means alone. In this work, a series of β-d-xylopyranosides is used to outline how a combination of experimental NMR parameters and computed molecular properties can be used to determine conformers and quantify the composition of conformational equilibria. We demonstrate that identifying the most stable conformers using energy calculations is challenging and computing of NMR shieldings is typically not sensitive enough. On the other hand, computed spin-spin coupling constants for the xyloside ring can be used to unambiguously assign experimental NMR data of dynamic conformational equilibria and quantify the ratio of different conformers in the mixture. As a proof of principle, this procedure allowed to analyze a hitherto unknown dynamic equilibrium of a diamino-xyloside as a precursor of a molecular switch.
Collapse
Affiliation(s)
- Sven Ole Jaeschke
- Otto Diels Institute of Organic ChemistryChristiana Albertina University of KielOtto-Hahn-Platz 3–424118KielGermany
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic ChemistryChristiana Albertina University of KielOtto-Hahn-Platz 3–424118KielGermany
| | - Alexander Auer
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
3
|
Pedersen CM, Su H. Ring-System-Based Conformational Switches and their Applications in Sensing and Liposomal Drug Delivery. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1720045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractIn the past decades, a great number of stimuli-responsive systems have been developed to be used as drug-delivery systems with high sensitivity and selectivity in targeted therapy. Despite promising results, the current stimuli-responsive systems suffer from the complexity of preparation, as most novel stimuli-responsive systems are based on polymers. Small molecules have often been neglected as candidates for application for stimuli-responsive systems. Recently, structures based on six-membered ring molecules or bicyclic molecules have been developed into conformational switches working through conformational interconversion. These single conformational switches have significantly reduced the complexity of material preparation compared to polymers or copolymers. In this review, we focus on ring-system-based conformational switches that are involved in sensors and smart drug-delivery systems. We hope that this review will shed light on ring-system-based single conformational switches for use in the development of stimuli-responsive systems.1 Introduction2 Conformation Switches Based On Bispidine Derivatives3 Conformation Switches Based On Cycloalkanes4 Conformation Switches Based On Carbohydrates5 Conclusion
Collapse
Affiliation(s)
| | - Hang Su
- Department of Chemistry, University of Copenhagen
- Practice Innovations Center, Changchun University of Chinese Medicine
| |
Collapse
|
4
|
Sagar R, Lou J, Watson AJ, Best MD. Zinc Triggered Release of Encapsulated Cargo from Liposomes via a Synthetic Lipid Switch. Bioconjug Chem 2021; 32:2485-2496. [PMID: 34870414 DOI: 10.1021/acs.bioconjchem.1c00425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Liposomes are effective nanocarriers due to their ability to encapsulate and deliver a wide variety of therapeutics. However, therapeutic potential would be improved by enhanced control over the release of drug cargo. Zinc ions provide exciting new targets for stimuli-responsive lipid design due to their overly abundant concentrations associated with diseased cells. Herein, we report zinc-triggered release of liposomal contents exploiting synthetic lipid switches designed to undergo conformational changes in the presence of this ion. Initially, Nile red leakage assays were conducted that validated successful dose-dependent triggering of release using zinc-responsive lipids (ZRLs). In addition, dynamic light scattering and confocal microscopy experiments showed that zinc treatment led to morphological changes in lipid nanoparticles only when ZRLs were present in formulations. Next, zinc-binding experiments conducted in a solution (NMR, MS) or membrane (zeta potential) context confirmed ZRL-Zn complexation. Finally, polar cargo release from liposomes was achieved. The results from these wide-ranging experiments using four different compounds indicated that zinc-responsive properties varied based on ZRL structure, providing insights into the structural requirements for activity. This work has established zinc-responsive liposomal platforms toward the development of clinical triggered release formulations.
Collapse
Affiliation(s)
- Ruhani Sagar
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Alexa J Watson
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
5
|
Jaeschke SO, Lindhorst TK. Versatile Synthesis of Diaminoxylosides via Iodosulfonamidation of Xylal Derivatives. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sven Ole Jaeschke
- Otto Diels Institute of Organic Chemistry Christiana Albertina University of Kiel Otto-Hahn-Platz 3–4 24118 Kiel Germany
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic Chemistry Christiana Albertina University of Kiel Otto-Hahn-Platz 3–4 24118 Kiel Germany
| |
Collapse
|
6
|
Qualls ML, Sagar R, Lou J, Best MD. Demolish and Rebuild: Controlling Lipid Self-Assembly toward Triggered Release and Artificial Cells. J Phys Chem B 2021; 125:12918-12933. [PMID: 34792362 DOI: 10.1021/acs.jpcb.1c07406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ability to modulate the structures of lipid membranes, predicated on our nuanced understanding of the properties that drive and alter lipid self-assembly, has opened up many exciting biological applications. In this Perspective, we focus on two endeavors in which the same principles are invoked to achieve completely opposite results. On one hand, controlled liposome decomposition enables triggered release of encapsulated cargo through the development of synthetic lipid switches that perturb lipid packing in the presence of disease-associated stimuli. In particular, recent approaches have utilized artificial lipid switches designed to undergo major conformational changes in response to a range of target conditions. On the other end of the spectrum, the ability to drive the in situ formation of lipid bilayer membranes from soluble precursors is an important component in the establishment of artificial cells. This work has culminated in chemoenzymatic strategies that enable lipid manufacturing from simple components. Herein, we describe recent advancements in these two unique undertakings that are linked by their reliance on common principles of lipid self-assembly.
Collapse
Affiliation(s)
- Megan L Qualls
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Ruhani Sagar
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
7
|
Benedetti E, Micouin L, Fleurisson C. Cyclic cis-1,3-Diamines Derived from Bicyclic Hydrazines: Synthesis and Applications. Synlett 2021. [DOI: 10.1055/s-0040-1707324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractCyclic cis-1,3-diamines are versatile building blocks frequently found in natural molecules or biologically active compounds. In comparison with widely studied 1,2-diamines, and despite their chemical similarity, 1,3-diamines have been investigated less intensively probably because of a lack of general synthetic procedures giving access to these compounds with good levels of chemo-, regio-, and stereocontrol. In this Account we will give a general overview of the biological interest of cyclic cis-1,3-diamines. We will then describe the synthesis and potential applications of these compounds with a particular focus on the work realized in our laboratory.1 Introduction2 Biological Relevance of the cis-1,3-Diamine Motif3 Classical Synthetic Strategies towards cis-1,3-Diamines4 N–N Bond Cleavage of Bicyclic Hydrazines: A Versatile Method to Access cis-1,3-Diamines4.1 Preparation of Five-Membered Cyclic cis-1,3-Diamino Alcohols4.2 Access to Fluorinated 1,3-cis-Diaminocyclopentanes4.3 Synthesis of cis-1,3-Diaminocyclohexitols4.4 Formation of Cyclic cis-3,5-Diaminopiperidines5 Applications of Cyclic cis-1,3-Diamines5.1 Small-Molecular RNA Binders5.2 Fluorinated 1,3-Diamino Cyclopentanes as NMR Probes6 Concluding Remarks
Collapse
Affiliation(s)
| | - Laurent Micouin
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques – UMR8601 CNRS Université de Paris
| | | |
Collapse
|
8
|
Holmstrøm T, Galsgaard Malle M, Wu S, Jensen KJ, Hatzakis NS, Pedersen CM. Carbohydrate-Derived Metal-Chelator-Triggered Lipids for Liposomal Drug Delivery. Chemistry 2021; 27:6917-6922. [PMID: 33411939 DOI: 10.1002/chem.202005332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 11/11/2022]
Abstract
Liposomes are versatile three-dimensional, biomaterial-based frameworks that can spatially enclose a variety of organic and inorganic biomaterials for advanced targeted-delivery applications. Implementation of external-stimuli-controlled release of their cargo will significantly augment their wide application for liposomal drug delivery. This paper presents the synthesis of a carbohydrate-derived lipid, capable of changing its conformation depending on the presence of Zn2+ : an active state in the presence of Zn2+ ions and back to an inactive state in the absence of Zn2+ or when exposed to Na2 EDTA, a metal chelator with high affinity for Zn2+ ions. This is the first report of a lipid triggered by the presence of a metal chelator. Total internal reflection fluorescence microscopy and a single-liposome study showed that it indeed was possible for the lipid to be incorporated into the bilayer of stable liposomes that remained leakage-free for the fluorescent cargo of the liposomes. On addition of EDTA to the liposomes, their fluorescent cargo could be released as a result of the membrane-incorporated lipids undergoing a conformational change.
Collapse
Affiliation(s)
- Thomas Holmstrøm
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Mette Galsgaard Malle
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Shunliang Wu
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Knud Jørgen Jensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Nikos S Hatzakis
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark
| | | |
Collapse
|
9
|
Holmstrøm T, Raydan D, Pedersen CM. Easy access to a carbohydrate-based template for stimuli-responsive surfactants. Beilstein J Org Chem 2020; 16:2788-2794. [PMID: 33281982 PMCID: PMC7684687 DOI: 10.3762/bjoc.16.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023] Open
Abstract
In this paper we describe the synthesis of a new carbohydrate-based building block functionalized with azido or amino groups on the 2 and 4 positions. The building block can be synthesized in anomerically pure form in only five scalable steps starting from commercially available levoglucosan. It was shown that the building block could undergo alkylations under strongly basic conditions. The building block with azido groups could furthermore take part in CuAAC reactions, generating derivatives with ester or carboxylic acid functionalities. In addition, the anomeric mixture of the building block was used for the synthesis of a molecule that could act as an emulsifier only in the presence of Zn2+ ions.
Collapse
Affiliation(s)
- Thomas Holmstrøm
- Department of Chemistry, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Daniel Raydan
- Department of Chemistry, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark.,LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Christian Marcus Pedersen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
10
|
Lou J, Best MD. Strategies for altering lipid self-assembly to trigger liposome cargo release. Chem Phys Lipids 2020; 232:104966. [PMID: 32888913 DOI: 10.1016/j.chemphyslip.2020.104966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 01/21/2023]
Abstract
While liposomes have proven to be effective drug delivery nanocarriers, their therapeutic attributes could be improved through the development of clinically viable triggered release strategies in which encapsulated drug contents could be selectively released at the sites of diseased cells. As such, a significant amount of research has been reported involving the development of stimuli-responsive liposomes and a broad range of strategies have been explored for driving content release. These have included the introduction of trigger groups at either the lipid headgroup or within the acyl chains that alter lipid self-assembly properties of known lipids as well as the rational design of lipid analogs programed to undergo conformational changes induced by events such as binding interactions. This review article describes advances in the design of stimuli-responsive liposome strategies with an eye towards emerging trends in the field.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Dr, Knoxville, TN, 37996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Dr, Knoxville, TN, 37996, USA.
| |
Collapse
|
11
|
Mbarek A, Moussa G, Chain JL. Pharmaceutical Applications of Molecular Tweezers, Clefts and Clips. Molecules 2019; 24:molecules24091803. [PMID: 31075983 PMCID: PMC6539068 DOI: 10.3390/molecules24091803] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022] Open
Abstract
Synthetic acyclic receptors, composed of two arms connected with a spacer enabling molecular recognition, have been intensively explored in host-guest chemistry in the past decades. They fall into the categories of molecular tweezers, clefts and clips, depending on the geometry allowing the recognition of various guests. The advances in synthesis and mechanistic studies have pushed them forward to pharmaceutical applications, such as neurodegenerative disorders, infectious diseases, cancer, cardiovascular disease, diabetes, etc. In this review, we provide a summary of the synthetic molecular tweezers, clefts and clips that have been reported for pharmaceutical applications. Their structures, mechanism of action as well as in vitro and in vivo results are described. Such receptors were found to selectively bind biological guests, namely, nucleic acids, sugars, amino acids and proteins enabling their use as biosensors or therapeutics. Particularly interesting are dynamic molecular tweezers which are capable of controlled motion in response to an external stimulus. They proved their utility as imaging agents or in the design of controlled release systems. Despite some issues, such as stability, cytotoxicity or biocompatibility that still need to be addressed, it is obvious that molecular tweezers, clefts and clips are promising candidates for several incurable diseases as therapeutic agents, diagnostic or delivery tools.
Collapse
Affiliation(s)
- Amira Mbarek
- Gene Delivery Laboratory, Faculty of pharmacy, Université de Montréal, H3C 3J7, Montréal, Québec, Canada.
| | - Ghina Moussa
- Gene Delivery Laboratory, Faculty of pharmacy, Université de Montréal, H3C 3J7, Montréal, Québec, Canada.
| | - Jeanne Leblond Chain
- Gene Delivery Laboratory, Faculty of pharmacy, Université de Montréal, H3C 3J7, Montréal, Québec, Canada.
- Univ. Bordeaux, ARNA Laboratory, F-33016 Bordeaux, France.
- INSERM U1212, CNRS UMR 5320, ARNA Laboratory, F-33016 Bordeaux, France.
| |
Collapse
|
12
|
Lou J, Zhang X, Best MD. Lipid Switches: Stimuli-Responsive Liposomes through Conformational Isomerism Driven by Molecular Recognition. Chemistry 2018; 25:20-25. [PMID: 30133869 DOI: 10.1002/chem.201803389] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/21/2018] [Indexed: 11/10/2022]
Abstract
Advancements in the field of liposomal drug carriers have culminated in greatly improved delivery properties. An important aspect of this work entails development of designer liposomes for release of contents triggered by environmental changes. The majority of these systems are driven by chemical reactions in the presence of different stimuli. However, a promising new paradigm instead focuses on molecular recognition events as the impetus for content release. In certain cases, these platforms exploit synthetic lipid switches designed to undergo conformational changes upon binding to target ions or molecules that perturb membrane assembly, thereby triggering cargo release. Examples of this approach reported thus far showcase how rational design of lipid switches can result in dramatic changes in lipid assembly properties. These strategies show great promise for opening up new pathophysiological stimuli that can be harnessed for programmed content release in drug delivery applications.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Xiaoyu Zhang
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| |
Collapse
|
13
|
Behzadi S, Rosenauer C, Kappl M, Mohr K, Landfester K, Crespy D. Osmotic pressure-dependent release profiles of payloads from nanocontainers by co-encapsulation of simple salts. NANOSCALE 2016; 8:12998-13005. [PMID: 27304251 DOI: 10.1039/c6nr01882c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials.
Collapse
Affiliation(s)
- Shahed Behzadi
- Max Planck Institute for Polymer Research, D-55128 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|