1
|
Molliet A, Doninelli S, Hong L, Tran B, Debas M, Salentinig S, Kilbinger AFM, Casalini T. Solvent Dependent Folding of an Amphiphilic Polyaramid. J Am Chem Soc 2023; 145:27830-27837. [PMID: 38084077 DOI: 10.1021/jacs.3c11026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A series of synthetic alternating and amphiphilic aromatic amide polymers were synthesized by a step growth polymerization. Alternating meta- and para-linkages were introduced to force the polymer chain into a helical shape in the highly polar solvent water. The polymers were analyzed by 1H NMR spectroscopy and SEC in polar aprotic solvents such as DMSO and DMF. However, the polymers also showed good solubility in water. 1H NMR spectroscopy, small-angle X-ray scattering, and dynamic light scattering provided clear evidence of polymer folding in water but not DMF. We employed parallel tempering metadynamics in the well-tempered ensemble (PTMetaD-WTE) to simulate the free energy surfaces of an analogous model polymer in DMF and water. The simulations gave a molecular model of an unfolded structure in DMF and a helically folded tubular structure in water.
Collapse
Affiliation(s)
- Angélique Molliet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Samantha Doninelli
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Linda Hong
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Bettina Tran
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Meron Debas
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Andreas F M Kilbinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Tommaso Casalini
- Department of Chemistry and Applied Bioscience, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland
- Polymer Engineering Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via la Santa 1, Lugano 6962, Switzerland
| |
Collapse
|
2
|
Yang Y, Chen F, Tian X, Chen T, Wu L, Jin LY. Supramolecular nanostructures constructed by rod-coil molecular isomers: effect of rod sequences on molecular assembly. SOFT MATTER 2019; 15:6718-6724. [PMID: 31389465 DOI: 10.1039/c9sm01279f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coil-rod-coil molecules, composed of flexible oligoether chains and conjugated rod blocks, have a well-known ability to produce various nanostructures in bulk and in aqueous solution. Herein we report the synthesis and self-assembly of coil-rod-coil molecules based on the sequence of the rod building block and the type of oligoether coil chain. These molecules consist of conjugated rod segments, which are composed of biphenyl, terphenyl, and acetylenic bonds, with chiral oligoether chains as flexible coil segments. The experimental results imply that the sequence of the rod segments markedly influences the self-assembled nanostructures of coil-rod-coil molecules in the bulk state, and that the type of coil chain strongly affects the morphology of the supramolecular nanoassemblies of these molecules in aqueous solution. In the bulk state, molecules 1a and 1b, which contain biphenyl units connected to the end of the coil segments self-organize into a hexagonal perforated lamellar phase, and oblique columnar and body-centred tetragonal structures, respectively. However, molecules 2a and 2b bearing terphenyl units linked to the end of the coil segments self-assemble into lamellar, hexagonal perforated lamellar and hexagonal columnar structures. In aqueous solution, rod-coil molecular isomers with linear chiral oligoether chains self-assemble into helical nanofibres of various lengths. Meanwhile, isomers with chiral oligoether dendron chains self-organize into sheet-like nanoribbons of different sizes.
Collapse
Affiliation(s)
- Yuntian Yang
- Key Lab for Organism Resources of the Changbai Mountain and Functional Molecules, and Department of Chemistry, College of Science, Yanbian University, No. 977 Gongyuan Road, Yanji 133002, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
3
|
Liu CZ, Yan M, Wang H, Zhang DW, Li ZT. Making Molecular and Macromolecular Helical Tubes: Covalent and Noncovalent Approaches. ACS OMEGA 2018; 3:5165-5176. [PMID: 31458731 PMCID: PMC6641876 DOI: 10.1021/acsomega.8b00681] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/30/2018] [Indexed: 05/21/2023]
Abstract
Aromatic foldamers possess well-defined cavity that can be stabilized by discrete intramolecular interactions including hydrogen bonding, solvophobicity, electrostatic repulsion, or coordination. Long foldamers can form dynamic deep helical tubular architectures that are not only structurally attractive but also useful hosts for guest encapsulation, chirality induction, delivery, and catalysis. This kind of helical tubular structures can be formed by single molecules or macromolecules or by connecting short-folded or helical segments through noncovalent or covalent forces. This perspective summarizes the recent advances on the construction of helical tubes and their properties and functions.
Collapse
Affiliation(s)
- Chuan-Zhi Liu
- Department
of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and
Innovative Materials, andCollaborative Innovation Centre of Chemistry for Energy
Materials (iChEM), Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Meng Yan
- Department
of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and
Innovative Materials, andCollaborative Innovation Centre of Chemistry for Energy
Materials (iChEM), Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Hui Wang
- Department
of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and
Innovative Materials, andCollaborative Innovation Centre of Chemistry for Energy
Materials (iChEM), Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department
of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and
Innovative Materials, andCollaborative Innovation Centre of Chemistry for Energy
Materials (iChEM), Fudan University, 2205 Songhu Road, Shanghai 200438, China
- E-mail: (D.-W.Z.)
| | - Zhan-Ting Li
- Department
of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and
Innovative Materials, andCollaborative Innovation Centre of Chemistry for Energy
Materials (iChEM), Fudan University, 2205 Songhu Road, Shanghai 200438, China
- E-mail: (Z.-T.L.)
| |
Collapse
|
4
|
Yang D, Zhang L, Yin L, Zhao Y, Zhang W, Liu M. Fabrication of chiroptically switchable films via co-gelation of a small chiral gelator with an achiral azobenzene-containing polymer. SOFT MATTER 2017; 13:6129-6136. [PMID: 28791338 DOI: 10.1039/c7sm00935f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Helical polymers are widely found in nature and synthetic functional materials. Although a number of elaborate strategies have been developed to endow polymers with helicity through either covalent bonds or supramolecular techniques, it still remains a challenge to get the desired helical polymers with controlled handedness in an easy but effective manner. In this study, we report an easily accessible gelation-guided self-assembly system where the chirality of a gelator can be easily transferred to an achiral azobenzene-containing polymer during gelation. It is found that during the process of chiral induction, the induced chirality of the polymer was entirely dominated by the molecular chirality of the gelator. Experimentally, achiral azobenzene-containing polymers with different side-chain lengths were doped into a supramolecular gel system formed with amphiphilic N,N'-bis-(octadecyl)-l(d)-Boc-glutamic (LBG-18 or DBG-18 for short). CD spectra and SEM observation confirmed that the co-assembly of polymer/LBG-18 or polymer/DBG-18 in the xerogel state exhibited supramolecular chirality. More importantly, alternate UV and visible light irradiation on the xerogel film caused the induced CD signal to switch between on and off states. Thus a chiroptical switch was fabricated based on the isomerization of the azo-polymer in xerogel films.
Collapse
Affiliation(s)
- Dong Yang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China.
| | | | | | | | | | | |
Collapse
|
5
|
Zhang DW, Wang H, Li ZT. Polymeric Tubular Aromatic Amide Helices. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/10/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Dan-Wei Zhang
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Fudan University; Shanghai 200433 China
| | - Hui Wang
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Fudan University; Shanghai 200433 China
| | - Zhan-Ting Li
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Fudan University; Shanghai 200433 China
| |
Collapse
|
6
|
You S, Zhong K, Jin LY. Control of supramolecular nanoassemblies by tuning the interactions of bent-shaped rod-coil molecules. SOFT MATTER 2017; 13:3334-3340. [PMID: 28421215 DOI: 10.1039/c7sm00615b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rod-coil molecules 1a, 1b and 2a, 2b, consisting of biphenyl and phenyl units connected by an acetylene bond as the rod segment and oligo(ethylene glycol) (OEG) as the coil segment, were synthesized and characterized. Molecules 1a and 1b incorporate a butoxy group at the apex of their bent-shaped rigid building blocks, while both 1b and 2b contain a lateral methyl group between the rod and coil segments. The self-assembling behavior of these molecules was investigated using DSC, SAXS, CD, AFM, and TEM in bulk and aqueous solutions. In the bulk state, 1a self-assembles into oblique columnar structures, whereas 1b, incorporating butoxy and lateral methyl groups, self-assembles into three-dimensional body-centered tetragonal structures. Molecules 2a and 2b with no butoxy groups, and 2b incorporating a lateral methyl group, self-assemble into hexagonal perforated lamellar and oblique columnar structures, respectively. In dilute aqueous solutions, 1a assembles into tubular nanoassemblies, while 1b self-organizes into micelles and nanoparticles. On the other hand, 2a and 2b spontaneously aggregate into nanoribbons and nanofibers. Furthermore, CD experiments together with AFM investigations of 2b indicate the creation of self-organized helical fibers, implying that the lateral methyl group induces the helical stacking of the rod building block. These results reveal that the butoxy and lateral methyl groups between the rod and coil segments dramatically influence the creation of supramolecular nanostructures and morphologies.
Collapse
Affiliation(s)
- Shengnan You
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science, Yanbian University, Yanji 133002, China.
| | | | | |
Collapse
|
7
|
Yang Y, Cui J, Li Z, Zhong K, Jin LY, Lee M. Self-Assembly of n-Shaped Rod–Coil Molecules into Thermoresponsive Nanoassemblies: Construction of Reversible Helical Nanofibers in Aqueous Environment. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01347] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yuntian Yang
- Key
Laboratory for Organism Resources of the Changbai Mountain and Functional
Molecules, Ministry of Education, and Department of Chemistry, College
of Science, Yanbian University, Yanji 133002, China
| | - Junjie Cui
- Center
for Supramolecular Optoelectronic
Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea
| | - Zhaohua Li
- Key
Laboratory for Organism Resources of the Changbai Mountain and Functional
Molecules, Ministry of Education, and Department of Chemistry, College
of Science, Yanbian University, Yanji 133002, China
| | - Keli Zhong
- College
of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou 121013, China
| | - Long Yi Jin
- Key
Laboratory for Organism Resources of the Changbai Mountain and Functional
Molecules, Ministry of Education, and Department of Chemistry, College
of Science, Yanbian University, Yanji 133002, China
| | - Myongsoo Lee
- State
Key Lab of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|