1
|
Deyerling J, Berionni Berna B, Biloborodov D, Haag F, Tömekce S, Cuxart MG, Li C, Auwärter W, Bonifazi D. Solution Versus On-Surface Synthesis of Peripherally Oxygen-Annulated Porphyrins through C-O Bond Formation. Angew Chem Int Ed Engl 2025; 64:e202412978. [PMID: 39196673 DOI: 10.1002/anie.202412978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 08/30/2024]
Abstract
This study investigates the synthesis of tetra- and octa-O-fused porphyrinoids employing an oxidative O-annulation approach through C-H activation. Despite encountering challenges such as overoxidation and instability in conventional solution protocols, successful synthesis was achieved on Au(111) surfaces under ultra-high vacuum (UHV) conditions. X-ray photoelectron spectroscopy, scanning tunneling microscopy, and non-contact atomic force microscopy elucidated the preferential formation of pyran moieties via C-O bond formation and subsequent self-assembly driven by C-H⋅⋅⋅O interactions. Furthermore, the O-annulation process was found to reduce the HOMO-LUMO gap by lifting the HOMO energy level, with the effect rising upon increasing the number of embedded O-atoms.
Collapse
Affiliation(s)
- Joel Deyerling
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Beatrice Berionni Berna
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Dmytro Biloborodov
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Felix Haag
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Sena Tömekce
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Marc G Cuxart
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Conghui Li
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Willi Auwärter
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Davide Bonifazi
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
2
|
Cribbin L, Twamley B, Buga N, O’ Brien JE, Bühler R, Fischer RA, Senge MO. C-C Coupling in sterically demanding porphyrin environments. Beilstein J Org Chem 2024; 20:2784-2798. [PMID: 39530078 PMCID: PMC11552435 DOI: 10.3762/bjoc.20.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Unlike their planar counterparts, classic synthetic protocols for C-C bond forming reactions on nonplanar porphyrins are underdeveloped. The development of C-C bond forming reactions on nonplanar porphyrins is critical in advancing this field of study for more complex porphyrin architectures, which could be used in supramolecular assemblies, catalysis, or sensing. In this work a library of arm-extended dodecasubstituted porphyrins was synthesized through the optimization of the classic Suzuki-Miyaura coupling of peripheral haloaryl substituents with a range of boronic acids. We report on palladium-catalyzed coupling attempts on the ortho-, meta-, and para-meso-phenyl position of sterically demanding dodecasubstituted saddle-shaped porphyrins. While para- and meta-substitutions could be achieved, ortho-functionalization in these systems remains elusive. Furthermore, borylation of a dodecasubstituted porphyrin's meso-phenyl position was explored and a subsequent C-C coupling showed the polarity of the reaction can be reversed resulting in higher yields. X-ray analysis of the target compounds revealed the formation of supramolecular assemblies, capable of accommodating substrates in their void.
Collapse
Affiliation(s)
- Liam Cribbin
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin, D02 R590, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Nicolae Buga
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin, D02 R590, Ireland
| | - John E O’ Brien
- School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Raphael Bühler
- TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Roland A Fischer
- TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin, D02 R590, Ireland
- Institute for Advanced Study (TUM-IAS), Technical University of Munich, Lichtenberg, Str. 2a, 85748 Garching, Germany
| |
Collapse
|
3
|
Yadav I, Osterloh WR, Kadish KM, Sankar M. Synthesis, Spectral, Redox, and Sensing Studies of β-Dicyanovinyl-Appended Corroles and Their Metal Complexes. Inorg Chem 2023; 62:7738-7752. [PMID: 37146287 DOI: 10.1021/acs.inorgchem.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A new family of β-dicyanovinyl (DCV)-appended corroles represented as MTPC(MN) (where M = 3H, Cu, Ag, and Co(PPh3) and MN = malononitrile and TPC = 5,10,15-triphenylcorrole) were synthesized starting from the free base mono β-formyl corrole, H3TPC(CHO), and characterized along with their respective MTPC(CHO) and MTPC complexes as to their spectroscopic and electrochemical properties in nonaqueous media. Comparisons between the two series of corroles demonstrate a pronounced substituent effect of the β-DCV group on the physicochemical properties making the MTPC(MN) derivatives substantially easier to reduce and more difficult to oxidize than the formyl or unsubstituted corroles. In addition, the colorimetric and spectral detection of 11 different anions (X) in the form of tetrabutylammonium salts (TBAX, X = PF6-, OAc-, H2PO4-, CN-, HSO4-, NO3-, ClO4-, F-, Cl-, Br-, and I-) were also investigated in nonaqueous media. Of the investigated anions, only CN- was found to induce changes in the UV-vis and 1H NMR spectra of the β-DCV metallocorroles. This data revealed that CuTPC(MN) and AgTPC(MN) act as chemodosimeters for selective cyanide ion detection via a nucleophilic attack at the vinylic carbon of the DCV substituent, while (PPh3)CoTPC(MN) acts as a chemosensor for cyanide ion sensing via axial coordination to the cobalt metal center. A low-limit detection of cyanide ions was observed at 1.69 ppm for CuTPC(MN) and 1.17 ppm for AgTPC(MN) in toluene.
Collapse
Affiliation(s)
- Inderpal Yadav
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - W Ryan Osterloh
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Karl M Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
4
|
Yuan L, Liu Y, Sun W, Ye K, Dou C, Wang Y. PO-containing dibenzopentaarenes: facile synthesis, structures and optoelectronic properties. Dalton Trans 2022; 51:11892-11898. [PMID: 35876191 DOI: 10.1039/d2dt01889f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporation of heteroatoms into polyarenes has been developed as an effective approach to alter their intrinsic structures and properties. Herein, we designed and synthesized two PO-containing dibenzopentaarene isomers (5a and 5b) and studied their structures and properties, along with those of dibenzopentaarenes containing six-membered Si- and B-heterocycles (3 and 4). These heterocyclic polyarenes have similar frameworks to well-known heptazethrene, and thus can be regarded as members of the heteroatom-doped zethrene system. The heterocycles greatly affect not only the molecular and packing structures but also the electronic structures and properties. Notably, while compounds 3 and 4 adopt almost planar geometries, 5a possesses a clearly curved conformation, leading to its brick-type slipped and dense π-π stacking mode. Moreover, the electron-withdrawing PO groups endow 5a and 5b with simultaneously lowered lowest unoccupied molecular orbital (LUMO)/highest occupied molecular orbital (HOMO) levels, whereas the p-π conjugation of the B atoms in 4 leads to its smaller energy gap and thus remarkably red-shifted absorption and fluorescence bands by over 80 nm, though all of these molecules possess similar closed-shell structures. This study thus deepens the understanding of heteroatom-doping effects, which may be expanded to develop other heteroatom-doped zethrene materials.
Collapse
Affiliation(s)
- Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yujia Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Wenting Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
5
|
Ishizuka T, Kojima T. Recent Development of π-Expanded Porphyrin Derivatives by Peripheral Ring Fusion. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba
| |
Collapse
|
6
|
Phenylene-linked tetrapyrrole arrays containing free base and diverse metal chelate forms – Versatile synthetic architectures for catalysis and artificial photosynthesis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem Rev 2022; 122:565-788. [PMID: 34850633 PMCID: PMC8759089 DOI: 10.1021/acs.chemrev.1c00449] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
This review surveys recent progress in the chemistry of polycyclic heteroaromatic molecules with a focus on structural diversity and synthetic methodology. The article covers literature published during the period of 2016-2020, providing an update to our first review of this topic (Chem. Rev. 2017, 117 (4), 3479-3716).
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Stępień
- Wydział Chemii, Uniwersytet
Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
8
|
Feng S, Qu Z, Zhou Z, Chen J, Gai L, Lu H. Si-Bridged annulated BODIPYs: synthesis, unique structure and photophysical properties. Chem Commun (Camb) 2021; 57:11689-11692. [PMID: 34673851 DOI: 10.1039/d1cc04687j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two novel Si-bridged meso-annulated BODIPY dyes have been prepared through intermolecular C-I silylation and subsequent intramolecular C-H silylation in a one-pot reaction. A marked redshift of the main spectral bands was observed since the efficient σ*-π* conjugation results in a notable stabilization of the LUMOs. Si-annulation blocks the non-radiative decay and contributes to higher fluorescence quantum yields. This strategy is very attractive for the construction of highly emissive polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Siyang Feng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China.
| | - Zhirong Qu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China.
| | - Zhikuan Zhou
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China.
| | - Jiaying Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China.
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China.
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China.
| |
Collapse
|
9
|
Urbańska K, Farinone M, Pawlicki M. Changes in porphyrin’s conjugation based on synthetic and post-synthetic modifications. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2019-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Porphyrins or more broadly defined porphyrinoids are the structures where the extended π-cloud can be significantly modified by several factors. The broad range of introduced structural motifs has shown a possibility of modification of conjugation by a controlled synthetic approach, leading to expected optical or magnetic behaviour, and also by post-synthetic modifications (i.e. redox or protonation/deprotonation), Both approaches lead to noticeab changes in observed properties but also open a potential for further utilization. Thus, this already constituted big family of macrocyclic structures with specific highly extended π-delocalization shows a significant contribution in several fields from fundamental studies, leading to understanding behaviour of skeletons like that with a substantial influence on biological studies and material science. The presented material focuses on the most significant examples of modifications of porphyrinoids skeleton leading to drastic changes in optical response and magnetic properties. Through the presentation, the focus will be placed on the changes leading to the most red-shifted transition as the parameter indicating extending the π-delocalization. Significantly different magnetic character will be also discussed based on the switching between aromatic/antiaromatic character assigned to macrocyclic structures that will be included.
Collapse
Affiliation(s)
- Karolina Urbańska
- Wydział Chemii , Uniwersytet Wrocławski , F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| | - Marco Farinone
- Wydział Chemii , Uniwersytet Wrocławski , F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| | - Miłosz Pawlicki
- Wydział Chemii , Uniwersytet Wrocławski , F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| |
Collapse
|
10
|
Kato K, Osuka A. Propeller-Shaped Semi-fused Porphyrin Trimers: Molecular-Symmetry-Dependent Chiroptical Response. Chemistry 2020; 26:10217-10221. [PMID: 32459376 DOI: 10.1002/chem.202002157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/26/2020] [Indexed: 11/09/2022]
Abstract
Triple helicene-like semi-fused trimeric NiII porphyrins were constructed by alkyne trimerization of an ethynyl-substituted porphyrin and subsequent three-fold Grignard addition to the formyl groups and acid-catalyzed intramolecular cyclization. The presence of stereogenic sp3 carbons in the central bridge leads to small inter-porphyrin conjugative interactions as was revealed by electrochemical and optical properties. Two diastereomers with stable chiral conformations were optically resolved, and the separated enantiomers displayed considerably intense circular dichroism. Importantly, the chiroptical response of C3 -symmetric helical isomer (|Δϵ|=830 m-1 cm-1 ) is 1.8 times amplified from that of C1 -symmetric one (|Δϵ|=470 m-1 cm-1 ). The observed amplification has been interpreted in terms of different spatial arrangements of the three porphyrins.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto, 606-8502, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto, 606-8502, Japan
| |
Collapse
|
11
|
Affiliation(s)
- Karolina Urbańska
- Wydział Chemii, Uniwersytet Wrocławski, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Miłosz Pawlicki
- Wydział Chemii, Uniwersytet Wrocławski, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
12
|
Affiliation(s)
- Kenichi Kato
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
13
|
Chaudhri N, Cong L, Bulbul AS, Grover N, Osterloh WR, Fang Y, Sankar M, Kadish KM. Structural, Photophysical, and Electrochemical Properties of Doubly Fused Porphyrins and Related Fused Chlorins. Inorg Chem 2020; 59:1481-1495. [PMID: 31889445 DOI: 10.1021/acs.inorgchem.9b03329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electrochemical and physicochemical properties of tetraphenylporphyrins and tetraphenylchlorins with two fused indanedione (IND) or malononitrile (MN) groups and two antipodal Br, Ph, or H β-substituents are investigated in nonaqueous media. These compounds were synthesized by oxidative fusion of free-base trans-chlorins, followed by metalation. The corresponding free-base di-fused chlorins were also isolated as intermediates and characterized for comparisons. The examined di-fused porphyrins (DFP) and di-fused chlorins (DFC) are represented as MDFP(Y)2(R)2 and H2DFC(Y)2(R)2, where M = 2H, CuII, NiII, ZnII, and CoII, Y is a fused indanedione (IND) or malononitrile group (MN), and R = H, Br, or Ph. The IND- and MN-appended compounds in both series exhibit the expected two one-electron oxidations but quite different redox behavior is observed upon reduction, where the free-base IND-appended chlorins show four reversible one-electron reductions, compared to only two for the related free-base MN-appended chlorins. Although porphyrin trianions and tetraanions have been recently described for derivatives with highly electron-withdrawing and/or π-extending substituents, this seems not to be the case for the doubly fused IND-chlorins, where the first two one-electron additions are proposed to be located at the conjugated macrocycle and the last two at the fused IND groups, each of which is reduced at a different potential, consistent with the behavior expected for two equivalent and interacting redox centers. Unlike the examined chlorins, which are all stable in their electroreduced forms, the electrogenerated anionic forms of the di-fused porphyrins are all highly reactive and characterized by cyclic voltammograms having reduction peaks not only for the synthesized compounds added to solution but also for one or more new redox active species formed at the electrode surface in homogeneous chemical reactions following electron transfer. Comparisons are made between electrochemical behavior of the structurally related porphyrins and chlorins and the sites of electron transfer assigned on the basis of known electrochemical diagnostic criteria. One of the compounds, ZnDFP(MN)2, was also structurally characterized as having a ruffled and twisted macrocyclic conformation.
Collapse
Affiliation(s)
- Nivedita Chaudhri
- Department of Chemistry , Indian Institute of Technology Roorkee , Roorkee 247667 , India
| | - Lei Cong
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Amir Sohel Bulbul
- Department of Chemistry , Indian Institute of Technology Roorkee , Roorkee 247667 , India
| | - Nitika Grover
- Department of Chemistry , Indian Institute of Technology Roorkee , Roorkee 247667 , India
| | - W Ryan Osterloh
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Yuanyuan Fang
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Muniappan Sankar
- Department of Chemistry , Indian Institute of Technology Roorkee , Roorkee 247667 , India
| | - Karl M Kadish
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| |
Collapse
|
14
|
Farinone M, Cybińska J, Pawlicki M. BODIPY-amino acid conjugates – tuning the optical response with a meso-heteroatom. Org Chem Front 2020. [DOI: 10.1039/d0qo00481b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The presence of a heteroatom at the meso-position of BODIPY significantly influences the π-cloud of the main chromophore, modifying the final optical properties.
Collapse
Affiliation(s)
- Marco Farinone
- Wydział Chemii
- Uniwersytet Wrocławski
- 50-383 Wrocław
- Poland
| | | | | |
Collapse
|
15
|
Stawski W, Hurej K, Skonieczny J, Pawlicki M. Organoboron Complexes in Edge-Sharing Macrocycles: The Triphyrin(2.1.1)-Tetraphyrin(1.1.1.1) Hybrid. Angew Chem Int Ed Engl 2019; 58:10946-10950. [PMID: 31141278 DOI: 10.1002/anie.201904819] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 01/29/2023]
Abstract
The formation of a precisely designed environment predefined for stabilizing electron-deficient atoms, such as boron(III), is an important approach for optimizing the properties of a chromophore. A triphyrin(2.1.1) motif built on the extended π-system of a tetraphyrin(1.1.1.1) skeleton creates a new coordination environment, with a CNN set of donors confined in a limited space predefined for binding small cations. The entrapment of boron(III) in the triphyrin(2.1.1) sector, with formation of a direct B-C bond, significantly changes the optical response and the global aromatic character of the compound, leading to an extension of the π-delocalisation.
Collapse
Affiliation(s)
- Wojciech Stawski
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Karolina Hurej
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Janusz Skonieczny
- Łukasiewicz Research Network®, PORT, ul. Stabłowicka 147, 54066, Wrocław, Poland
| | - Miłosz Pawlicki
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50383, Wrocław, Poland
| |
Collapse
|
16
|
Stawski W, Hurej K, Skonieczny J, Pawlicki M. Organoboron Complexes in Edge‐Sharing Macrocycles: The Triphyrin(2.1.1)–Tetraphyrin(1.1.1.1) Hybrid. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wojciech Stawski
- Department of ChemistryUniversity of Wrocław F. Joliot-Curie 14 50383 Wrocław Poland
| | - Karolina Hurej
- Department of ChemistryUniversity of Wrocław F. Joliot-Curie 14 50383 Wrocław Poland
| | - Janusz Skonieczny
- Łukasiewicz Research Network®, PORT ul. Stabłowicka 147 54066 Wrocław Poland
| | - Miłosz Pawlicki
- Department of ChemistryUniversity of Wrocław F. Joliot-Curie 14 50383 Wrocław Poland
| |
Collapse
|
17
|
Kato K, Osuka A. meta
‐ and
para
‐Phenylenediamine‐Fused Porphyrin Dimers: Synthesis and Magnetic Interactions of Their Dication Diradicals. Angew Chem Int Ed Engl 2019; 58:8546-8550. [DOI: 10.1002/anie.201901939] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/07/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Kenichi Kato
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
18
|
Kato K, Osuka A. meta
‐ and
para
‐Phenylenediamine‐Fused Porphyrin Dimers: Synthesis and Magnetic Interactions of Their Dication Diradicals. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kenichi Kato
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
19
|
Hirai M, Tanaka N, Sakai M, Yamaguchi S. Structurally Constrained Boron-, Nitrogen-, Silicon-, and Phosphorus-Centered Polycyclic π-Conjugated Systems. Chem Rev 2019; 119:8291-8331. [DOI: 10.1021/acs.chemrev.8b00637] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Masato Hirai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Naoki Tanaka
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Mika Sakai
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Shigehiro Yamaguchi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
20
|
Farinone M, Cybińska J, Pawlicki M. A controlled blue-shift in meso-nitrogen aryl fused DIPY and BODIPY skeletons. Org Chem Front 2019. [DOI: 10.1039/c9qo00294d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
An aryl-amine attached to the meso-position of the BODIPY skeleton quenches the fluorescence. The observed edge fusion creates a new heterocyclic subunit simultaneously increasing the efficiency of emission. The quantitative deprotonation of meso NH functionality leads to absorbance blue shift and increased emission quantum yield showing potential for formation of BODIPY based changeable chromophores.
Collapse
Affiliation(s)
- Marco Farinone
- Wydział Chemii
- Uniwersytet Wrocławski
- 50-383 Wrocław
- Poland
| | | | | |
Collapse
|
21
|
Chaudhri N, Grover N, Sankar M. Selective Conversion of Planar trans-Chlorins into Highly Twisted Doubly Fused Porphyrins or Chlorins via Oxidative Fusion. Inorg Chem 2018; 57:6658-6668. [DOI: 10.1021/acs.inorgchem.8b00849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nivedita Chaudhri
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Nitika Grover
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
22
|
Fukui N, Fujimoto K, Yorimitsu H, Osuka A. Embedding heteroatoms: an effective approach to create porphyrin-based functional materials. Dalton Trans 2018; 46:13322-13341. [PMID: 28875206 DOI: 10.1039/c7dt02815f] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Incorporation of planarized heteroatom(s) onto the porphyrin periphery is an effective approach to create porphyrin-based functional materials. In the last three decades, such an "embedding heteroatom" strategy has been actively explored in order to realize attractive electronic, optical, and electrochemical properties. This review aims to cover a variety of synthetic methodologies that have been developed for the construction of heteroatom-embedded porphyrins. Moreover, we also summarize their structure-property relationships as well as possible applications in various research fields including artificial photosynthesis, molecular engineering, organic electronics, and bioimaging.
Collapse
Affiliation(s)
- Norihito Fukui
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
23
|
Fujimoto K, Kasuga Y, Fukui N, Osuka A. Diphenylphosphine-Oxide-Fused and Diphenylphosphine-Fused Porphyrins: Synthesis, Tunable Electronic Properties, and Formation of Cofacial Dimers. Chemistry 2017; 23:6741-6745. [PMID: 28397373 DOI: 10.1002/chem.201700909] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Indexed: 11/09/2022]
Abstract
Diphenylphosphine-oxide-fused NiII porphyrin 8 was synthesized from 3,5,7-trichloroporphyrin 5 via a reaction sequence of nucleophilic aromatic substitution with lithium diphenylphosphide, oxidation with H2 O2 , and palladium-catalyzed intramolecular cyclization. Reduction of 8 with HSiCl3 gave diphenylphosphine-fused NiII porphyrin 9. The embedded P=O and P moieties serve as a strong electron-accepting and electron-donating group to perturb the optical and electrochemical properties of the NiII porphyrin. NiII porphyrin 9 is diamagnetic with a low-spin NiII center in solution but becomes paramagnetic with a five-coordinated NiII center with high-spin (S=1) state in the solid state. Diphenylphosphine-oxide-fused ZnII porphyrin 10 was also synthesized and shown to form a face-to-face dimer with mutual O-Zn bonds in the crystal and in nonpolar and moderately polar solvents. The dimerization of 10 in CDCl3 has been revealed to be an entropy-driven process with a large entropy gain (ΔSD =207 J K-1 mol-1 ).
Collapse
Affiliation(s)
- Keisuke Fujimoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuko Kasuga
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Norihito Fukui
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
24
|
Fukui N, Yorimitsu H, Osuka A. meso-meso-Linked Diarylamine-Fused Porphyrin Dimers. Chemistry 2016; 22:18476-18483. [PMID: 27859737 DOI: 10.1002/chem.201604301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Indexed: 12/13/2022]
Abstract
A meso-meso-linked diphenylamine-fused porphyrin dimer and its methoxy-substituted analogue were synthesized from a meso-meso-linked porphyrin dimer by a reaction sequence involving Ir-catalyzed β-selective borylation, iodination, meso-chlorination, and SN Ar reactions with diarylamines followed by electron-transfer-mediated intramolecular double C-H/C-I coupling. While these dimers commonly display characteristic split Soret bands and small oxidation potentials, they produced different products upon oxidation with tris(4-bromophenyl)aminium hexachloroantimonate. Namely, the diphenylamine-fused porphyrin dimer was converted into a dicationic closed-shell quinonoidal dimer, while the methoxy-substituted dimer gave a meso-meso, β-β doubly linked porphyrin dimer.
Collapse
Affiliation(s)
- Norihito Fukui
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
25
|
Hiroto S, Miyake Y, Shinokubo H. Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. Chem Rev 2016; 117:2910-3043. [PMID: 27709907 DOI: 10.1021/acs.chemrev.6b00427] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review focuses on the postfunctionalization of porphyrins and related compounds through catalytic and stoichiometric organometallic methodologies. The employment of organometallic reactions has become common in porphyrin synthesis. Palladium-catalyzed cross-coupling reactions are now standard techniques for constructing carbon-carbon bonds in porphyrin synthesis. In addition, iridium- or palladium-catalyzed direct C-H functionalization of porphyrins is emerging as an efficient way to install various substituents onto porphyrins. Furthermore, the copper-mediated Huisgen cycloaddition reaction has become a frequent strategy to incorporate porphyrin units into functional molecules. The use of these organometallic techniques, along with the traditional porphyrin synthesis, now allows chemists to construct a wide range of highly elaborated and complex porphyrin architectures.
Collapse
Affiliation(s)
- Satoru Hiroto
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| | - Yoshihiro Miyake
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| | - Hiroshi Shinokubo
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| |
Collapse
|
26
|
Ryoji-Noyori-Preis: L. E. Overman / Mukaiyama-Preis: M. C. White und H. Yorimitsu / Van't-Hoff-Preis: K. Kern und C. Wöll / In die Australian Academy of Science gewählt: J. J. Gooding / Liebig-Denkmünze: M. Antonietti / Hermann-Staudinger-Preis: K. Müllen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Ryoji Noyori Prize: L. E. Overman / Mukaiyama Award: M. C. White and H. Yorimitsu / van ’t Hoff Prize: K. Kern and C. Wöll / Elected to the Australian Academy of Science: J. J. Gooding / Liebig Memorial Medal: M. Antonietti / Hermann Staudinger Prize: K. Angew Chem Int Ed Engl 2016; 55:11333-4. [DOI: 10.1002/anie.201606831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Kato K, Cha W, Oh J, Furukawa K, Yorimitsu H, Kim D, Osuka A. Spontaneous Formation of an Air-Stable Radical upon the Direct Fusion of Diphenylmethane to a Triarylporphyrin. Angew Chem Int Ed Engl 2016; 55:8711-4. [DOI: 10.1002/anie.201602683] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Kenichi Kato
- Department of Chemistry, Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Wonhee Cha
- Spectroscopy Laboratory of Functional π-Electronic Systems and Department of Chemistry; Yonsei University; Seoul 120-749 Korea
| | - Juwon Oh
- Spectroscopy Laboratory of Functional π-Electronic Systems and Department of Chemistry; Yonsei University; Seoul 120-749 Korea
| | - Ko Furukawa
- Center for Instrumental Analysis; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Dongho Kim
- Spectroscopy Laboratory of Functional π-Electronic Systems and Department of Chemistry; Yonsei University; Seoul 120-749 Korea
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
29
|
Kato K, Cha W, Oh J, Furukawa K, Yorimitsu H, Kim D, Osuka A. Spontaneous Formation of an Air-Stable Radical upon the Direct Fusion of Diphenylmethane to a Triarylporphyrin. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602683] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kenichi Kato
- Department of Chemistry, Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Wonhee Cha
- Spectroscopy Laboratory of Functional π-Electronic Systems and Department of Chemistry; Yonsei University; Seoul 120-749 Korea
| | - Juwon Oh
- Spectroscopy Laboratory of Functional π-Electronic Systems and Department of Chemistry; Yonsei University; Seoul 120-749 Korea
| | - Ko Furukawa
- Center for Instrumental Analysis; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Dongho Kim
- Spectroscopy Laboratory of Functional π-Electronic Systems and Department of Chemistry; Yonsei University; Seoul 120-749 Korea
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|