1
|
Wang ZL, Cheng JK, Wang F. Iron-catalyzed C-7 Selective NH 2 Amination of Indoles. Angew Chem Int Ed Engl 2024; 63:e202412103. [PMID: 38979667 DOI: 10.1002/anie.202412103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
7-Aminoindoles are important synthetic intermediates to a broad range of bioactive molecules. Transition metal-catalyzed directed C-H amination is among the most straightforward route for their synthesis, whereas methods that could directly incorporate an NH2 group in a highly selective manner remains elusive. Moreover, there is still high demand for the development of earth-abundant metal catalysis for such attractive reactivity. We present here the first C-7 selective NH2 amination of indoles through a directed homolytic aromatic substitution (HAS) with iron-aminyl radical. The reaction exhibits broad substrate scope, tolerates variety of functional groups, and is readily scalable with catalyst loading down to 0.1 mol % and turnover number (TON) up to 4500.
Collapse
Affiliation(s)
- Zhan-Lin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Jin-Kai Cheng
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Fei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| |
Collapse
|
2
|
Das B, Dahiya A, Sahoo AK, Patel BK. Transformable Transient Directing Group-Assisted C(sp 2)–H Activation: Synthesis and Late-Stage Functionalizations of o-Alkenylanilines. J Org Chem 2022; 87:13383-13388. [DOI: 10.1021/acs.joc.2c01626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
3
|
Faarasse S, El Brahmi N, Guillaumet G, El Kazzouli S. Regioselective C-H Functionalization of the Six-Membered Ring of the 6,5-Fused Heterocyclic Systems: An Overview. Molecules 2021; 26:5763. [PMID: 34641306 PMCID: PMC8510187 DOI: 10.3390/molecules26195763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
The regioselective C-H functionalization of the five-membered ring of the 6,5-fused heterocyclic systems is nowadays well documented due to its high reactivity compared to the six-membered ring. So, developing new procedures of C-H functionalization of the six-membered ring "by thinking out of the box" is extremely challenging, which explains the limited number of reports published to date. This review paper aims to highlight advances achieved in this emerging chemistry research and discusses recently reported methods.
Collapse
Affiliation(s)
- Soukaina Faarasse
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, Fez 30000, Morocco; (S.F.); (N.E.B.); (G.G.)
- Institute of Organic and Analytical Chemistry, University of Orleans, UMR CNRS 7311, BP 6759, CEDEX 2, 45067 Orleans, France
| | - Nabil El Brahmi
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, Fez 30000, Morocco; (S.F.); (N.E.B.); (G.G.)
| | - Gérald Guillaumet
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, Fez 30000, Morocco; (S.F.); (N.E.B.); (G.G.)
- Institute of Organic and Analytical Chemistry, University of Orleans, UMR CNRS 7311, BP 6759, CEDEX 2, 45067 Orleans, France
| | - Saïd El Kazzouli
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, Fez 30000, Morocco; (S.F.); (N.E.B.); (G.G.)
| |
Collapse
|
4
|
Peng W, Liu Q, Yin F, Shi C, Ji L, Qu L, Wang C, Luo H, Kong L, Wang X. Rhodium(iii) catalyzed olefination and deuteration of tetrahydrocarbazole. RSC Adv 2021; 11:8356-8361. [PMID: 35423333 PMCID: PMC8698316 DOI: 10.1039/d1ra00236h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 01/24/2023] Open
Abstract
The rhodium-catalyzed olefination and deuteration of tetrahydrocarbazoles in water with the aid of an N,N-dimethylcarbamoyl-protected group is presented. This olefination method features a broad substrate scope, good functional-group tolerance, and high efficiency in water. Practical applications of the protocol are illustrated by the synthesis of various evodiamine derivatives. As such, this environmentally friendly approach to directly modify natural products will attract much attention in academic and industrial research.
Collapse
Affiliation(s)
- Wan Peng
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Qiaohong Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Cunjian Shi
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Limei Ji
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Lailiang Qu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Cheng Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Heng Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| |
Collapse
|
5
|
Kumar P, Nagtilak PJ, Kapur M. Transition metal-catalyzed C–H functionalizations of indoles. NEW J CHEM 2021. [DOI: 10.1039/d1nj01696b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarises a wide range of transformations on the indole skeleton, including arylation, alkenylation, alkynylation, acylation, nitration, borylation, and amidation, using transition-metal catalyzed C–H functionalization as the key step.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Prajyot Jayadev Nagtilak
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
6
|
Chandra D, Dhiman AK, Parmar D, Sharma U. Alkylation, alkenylation, and alkynylation of heterocyclic compounds through group 9 (Co, Rh, Ir) metal-catalyzed C-H activation. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1839849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Devesh Chandra
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| | - Ankit Kumar Dhiman
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| | - Diksha Parmar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| |
Collapse
|
7
|
Barber JS, Burtea A, Collins MR, Tran-Dubé M, Patman RL, Scales S, Smith G, Spangler JE, Wang F, Wang W, Yang S, Zhu J, Montgomery TP. Development of a Late-Stage Diversification Strategy for the 4- and 5-Positions of 4,5,6-Trisubstituted Indazoles. Org Lett 2020; 22:9047-9052. [PMID: 33166447 DOI: 10.1021/acs.orglett.0c03440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Indazoles represent a privileged motif in drug discovery. However, the formation of highly substituted indazoles can require the execution of lengthy synthetic routes with minimal opportunities to introduce diversity. In this report, we disclose the development of a late-stage diversification strategy for the 4- and 5-positions of 4,5,6-trisubstituted indazoles. A regioselective C-H functionalization and subsequent nucleophilic aromatic substitution provide two sequential points of diversification. The synthetic sequence delivers rapid access to an array of 4,5,6-trisubstituted indazoles in only four steps from readily available starting materials.
Collapse
Affiliation(s)
- Joyann S Barber
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Alexander Burtea
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Michael R Collins
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Michelle Tran-Dubé
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Ryan L Patman
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Stephanie Scales
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Graham Smith
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Jillian E Spangler
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Fen Wang
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Wei Wang
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Shouliang Yang
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - JinJiang Zhu
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - T Patrick Montgomery
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| |
Collapse
|
8
|
Mu X, Ge X, Zhong X, Han L, Liu T. Mechanistic insight into the rhodium-catalyzed, P-directed selective C7 arylation of indoles: a DFT study. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Ghosh S, Mondal S, Hajra A. Direct Catalytic Functionalization of Indazole Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000423] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Susmita Mondal
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Alakananda Hajra
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|
10
|
Koubachi J, El Brahmi N, Guillaumet G, El Kazzouli S. Oxidative Alkenylation of Fused Bicyclic Heterocycles. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jamal Koubachi
- Faculté Polydisciplinaire de Taroudant; Laboratoire de Chimie Appliquée et Environnement (LACAPE); Université Ibn Zohr d′Agadir; B.P 271 83000 Taroudant Morocco
| | - Nabil El Brahmi
- Euromed Research Center; Euromed Faculty of Engineering; Euromed University of Fes; Route de Meknes 30000 Fès Morocco
| | - Gérald Guillaumet
- Institut de Chimie Organique et Analytique (ICOA); Université d'Orléans, UMR CNRS 7311; BP 6759 45067 Orléans Cedex 2 France
| | - Saïd El Kazzouli
- Euromed Research Center; Euromed Faculty of Engineering; Euromed University of Fes; Route de Meknes 30000 Fès Morocco
| |
Collapse
|
11
|
Rej S, Chatani N. Rhodiumkatalysierte sp 2‐ und sp 3‐C‐H‐Funktionalisierungen mit entfernbaren dirigierenden Gruppen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201808159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Supriya Rej
- Department of Applied ChemistryFaculty of EngineeringOsaka University, Suita Osaka 565-0871 Japan
| | - Naoto Chatani
- Department of Applied ChemistryFaculty of EngineeringOsaka University, Suita Osaka 565-0871 Japan
| |
Collapse
|
12
|
Rej S, Chatani N. Rhodium-Catalyzed C(sp 2 )- or C(sp 3 )-H Bond Functionalization Assisted by Removable Directing Groups. Angew Chem Int Ed Engl 2019; 58:8304-8329. [PMID: 30311719 DOI: 10.1002/anie.201808159] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/12/2018] [Indexed: 12/25/2022]
Abstract
In recent years, transition-metal-catalyzed C-H activation has become a key strategy in the field of organic synthesis. Rhodium complexes are widely used as catalysts in a variety of C-H functionalization reactions because of their high reactivity and selectivity. The availability of a number of rhodium complexes in various oxidation states enables diverse reaction patterns to be obtained. Regioselectivity, an important issue in C-H activation chemistry, can be accomplished by using a directing group to assist the reaction. However, to obtain the target functionalized compounds, it is also necessary to use a directing group that can be easily removed. A wide range of directed C-H functionalization reactions catalyzed by rhodium complexes have been reported to date. In this Review, we discuss Rh-catalyzed C-H functionalization reactions that are aided by the use of a removable directing group such as phenol, amine, aldehyde, ketones, ester, acid, sulfonic acid, and N-heteroaromatic derivatives.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
13
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1105] [Impact Index Per Article: 184.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
14
|
Jaiswal Y, Kumar Y, Kumar A. Palladium-Catalyzed Regioselective C-H Alkenylation of Arylacetamides via Distal Weakly Coordinating Primary Amides as Directing Groups. J Org Chem 2018; 83:1223-1231. [PMID: 29276827 DOI: 10.1021/acs.joc.7b02618] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we disclose the efficient Pd(II)-catalyzed and regioselective ortho C-H alkenylation of arylacetamide derivatives, viz. weakly coordinating aliphatic primary amides. This protocol utilizes ubiquitous free primary amides as the directing group and circumvents two troublesome steps of installation and removal of an external auxiliary. This strategy directly enables the incorporation of a synthetically versatile olefin in the products in moderate to good yields with regio- and distereoselectivity. The alkenylated acetamides can be easily manipulated and further transformed into a variety of useful derivatives.
Collapse
Affiliation(s)
- Yogesh Jaiswal
- Department of Chemistry, Indian Institute of Technology Patna , Bihta 801106, Bihar, India
| | - Yogesh Kumar
- Department of Chemistry, Indian Institute of Technology Patna , Bihta 801106, Bihar, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna , Bihta 801106, Bihar, India
| |
Collapse
|
15
|
Peng Q, Hu J, Huo J, Yuan H, Xu L, Pan X. Cp*Rh(iii) catalyzed ortho-halogenation of N-nitrosoanilines by solvent-controlled regioselective C–H functionalization. Org Biomol Chem 2018; 16:4471-4481. [PMID: 29855022 DOI: 10.1039/c8ob00601f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly efficient rhodium-catalyzed, solvent-controlled regioselective C–H halogenation of anilines by using N-nitroso as a suitable and removable directing group was achieved under mild reaction conditions.
Collapse
Affiliation(s)
- Qiujun Peng
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| | - Jian Hu
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| | - Jiyou Huo
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| | - Hongshun Yuan
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| | - Lanting Xu
- Shanghai Research Institute of Fragrance and Flavor Industry
- Shanghai 200232
- China
| | - Xianhua Pan
- Shanghai Research Institute of Fragrance and Flavor Industry
- Shanghai 200232
- China
| |
Collapse
|
16
|
Chen Y, Zhang R, Peng Q, Xu L, Pan X. Rhodium(III)-Catalyzed Directed C−H Amidation of N
-Nitrosoanilines and Subsequent Formation of 1,2-Disubstituted Benzimidazoles. Chem Asian J 2017; 12:2804-2808. [DOI: 10.1002/asia.201701287] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 09/24/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Yanyu Chen
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Rong Zhang
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Qiujun Peng
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Lanting Xu
- Shanghai Research Institute of Fragrance and Flavor Industry; 480 Nanning Road Shanghai 200232 P.R. China
| | - XianHua Pan
- Shanghai Research Institute of Fragrance and Flavor Industry; 480 Nanning Road Shanghai 200232 P.R. China
| |
Collapse
|
17
|
Leitch JA, Bhonoah Y, Frost CG. Beyond C2 and C3: Transition-Metal-Catalyzed C–H Functionalization of Indole. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01785] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jamie A. Leitch
- Department
of Chemistry, University of Bath, Claverton Down, Bath, Somerset BA2 7AY, United Kingdom
| | - Yunas Bhonoah
- Syngenta, Jealott’s
Hill International Research Centre, Bracknell, Berkshire RG42
6EY, United Kingdom
| | - Christopher G. Frost
- Department
of Chemistry, University of Bath, Claverton Down, Bath, Somerset BA2 7AY, United Kingdom
| |
Collapse
|
18
|
Song S, Lu P, Liu H, Cai SH, Feng C, Loh TP. Switchable C–H Functionalization of N-Tosyl Acrylamides with Acryloylsilanes. Org Lett 2017; 19:2869-2872. [DOI: 10.1021/acs.orglett.7b01107] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shengjin Song
- Department
of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ping Lu
- Department
of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Huan Liu
- Department
of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Sai-Hu Cai
- Department
of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Institute
of Advanced Synthesis, College of Chemistry and Molecular Engineering,
Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Chao Feng
- Institute
of Advanced Synthesis, College of Chemistry and Molecular Engineering,
Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Teck-Peng Loh
- Department
of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 637371 Singapore
| |
Collapse
|