1
|
Dürig J, Calcagni M, Buschmann J. Transition metals in angiogenesis - A narrative review. Mater Today Bio 2023; 22:100757. [PMID: 37593220 PMCID: PMC10430620 DOI: 10.1016/j.mtbio.2023.100757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The aim of this paper is to offer a narrative review of the literature regarding the influence of transition metals on angiogenesis, excluding lanthanides and actinides. To our knowledge there are not any reviews up to date offering such a summary, which inclined us to write this paper. Angiogenesis describes the process of blood vessel formation, which is an essential requirement for human growth and development. When the complex interplay between pro- and antiangiogenic mediators falls out of balance, angiogenesis can quickly become harmful. As it is so fundamental, both its inhibition and enhancement take part in various diseases, making it a target for therapeutic treatments. Current methods come with limitations, therefore, novel agents are constantly being researched, with metal agents offering promising results. Various transition metals have already been investigated in-depth, with studies indicating both pro- and antiangiogenic properties, respectively. The transition metals are being applied in various formulations, such as nanoparticles, complexes, or scaffold materials. Albeit the increasing attention this field is receiving, there remain many unanswered questions, mostly regarding the molecular mechanisms behind the observed effects. Notably, approximately half of all the transition metals have not yet been investigated regarding potential angiogenic effects. Considering the promising results which have already been established, it should be of great interest to begin investigating the remaining elements whilst also further analyzing the established effects.
Collapse
Affiliation(s)
- Johannes Dürig
- University of Zürich, Faculty of Medicine, Pestalozzistrasse 3, 8032, Zurich, Switzerland
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Maurizio Calcagni
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johanna Buschmann
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
2
|
Ramos-Inza S, Plano D, Sanmartín C. Metal-based compounds containing selenium: An appealing approach towards novel therapeutic drugs with anticancer and antimicrobial effects. Eur J Med Chem 2022; 244:114834. [PMID: 36215861 DOI: 10.1016/j.ejmech.2022.114834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022]
|
3
|
Bouché M, Hognon C, Grandemange S, Monari A, Gros PC. Recent advances in iron-complexes as drug candidates for cancer therapy: reactivity, mechanism of action and metabolites. Dalton Trans 2020; 49:11451-11466. [PMID: 32776052 DOI: 10.1039/d0dt02135k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this perspective, we discuss iron-complexes as drug candidates that are promising alternatives to conventional platinum-based chemotherapies owing to their broad range of reactivities and to the targeting of different biological systems. Breakthroughs in the comprehension of iron complexes' structure-activity relationship contributed to the clarification of their metabolization pathways, sub-cellular localization and influence on iron homeostasis, while enlightening the primary molecular targets of theses likely multi-target metallodrugs. Both the antiproliferative activity and elevated safety index observed among the family of iron complexes showed encouraging results as per their therapeutic potential and selectivity also with the aim of reducing chemotherapy side-effects, and facilitated more pre-clinical investigations. The purpose of this perspective is to summarize the recent advances that contributed in unveiling the intricate relationships between the structural modifications on iron-complexes and their reactivity, cellular trafficking and global mechanisms of action to broaden their use as anticancer drugs and advance to clinical evaluation.
Collapse
Affiliation(s)
- Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| | - Cécilia Hognon
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Philippe C Gros
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| |
Collapse
|
4
|
Yang Y, Wang Y, Xu L, Chen T. Dual-functional Se/Fe complex facilitates TRAIL treatment against resistant tumor cells via modulating cellular endoplasmic reticulum stress. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Lin X, Zhao J, Huang W, Liu H, Feng P, Yang F, Chen T. Simple Aggregation-Induced Emission-Based Multifunctional Fluorescent Dots for Cancer Therapy In Vitro. Chem Asian J 2019; 14:4160-4163. [PMID: 31657112 DOI: 10.1002/asia.201901315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/21/2019] [Indexed: 12/15/2022]
Abstract
Multifunctional nanoparticles were simply synthesized by mixing a TICT+AIE featured molecule (TPAPP-CHO) with PBS solution. The fluorescent (FL) dots entered the cells via energy-related endocytosis and were located in lysosome emitting green FL. This indicated that the nanoparticles were dissociated in the lysosome. Moreover, the synthesized nanoparticles (NPs) demonstrate potent cytotoxicity against human U87 glioblastoma cells by inducing cell apoptosis via triggering intracellular ROS overproduction.
Collapse
Affiliation(s)
- Xueran Lin
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Junhao Zhao
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Wei Huang
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Hongxing Liu
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Fang Yang
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
6
|
Ruberte AC, Sanmartin C, Aydillo C, Sharma AK, Plano D. Development and Therapeutic Potential of Selenazo Compounds. J Med Chem 2019; 63:1473-1489. [PMID: 31638805 DOI: 10.1021/acs.jmedchem.9b01152] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Incorporation of selenium (Se) atom into small molecules can substantially enhance their antioxidant, anti-inflammatory, antimutagenic, antitumoral or chemopreventive, antiviral, antibacterial, antifungal, antiparasitic, and neuroprotective effects. Specifically, selenazo compounds have received great attention owing to their chemical properties, pharmaceutical applications, and low toxicity. In this Perspective, we compile extensive literature evidence with the description and discussion of the most recent advances in different selenazo and selenadiazo motifs as potential pharmacological candidates. We also provide some perspectives on the challenges and future directions in the advancement of these selenazo compounds, each of which could generate drug candidates for various diseases.
Collapse
Affiliation(s)
- Ana Carolina Ruberte
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Carmen Sanmartin
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Carlos Aydillo
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72 , Penn State College of Medicine , 500 University Drive , Hershey , Pennsylvania 17033 , United States
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain.,Department of Pharmacology, Penn State Cancer Institute, CH72 , Penn State College of Medicine , 500 University Drive , Hershey , Pennsylvania 17033 , United States
| |
Collapse
|
7
|
Zeng D, Zhao J, Luk KH, Cheung ST, Wong KH, Chen T. Potentiation of in Vivo Anticancer Efficacy of Selenium Nanoparticles by Mushroom Polysaccharides Surface Decoration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2865-2876. [PMID: 30785270 DOI: 10.1021/acs.jafc.9b00193] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Selenium nanoparticles (SeNPs) are recently emerging as promising anticancer agents because of their high bioavailability, low toxicity and remarkable anticancer activities. However, the effects of surface physicochemical properties on the biological actions remain elusive. Herein we decorated SeNPs with various water-soluble polysaccharides extracted from various mushrooms, to compare physical characteristics and anticancer profile of these SeNPs. The results showed that the prepared spherical SeNPs displayed particle sizes at 91-102 nm, and kept stable in aqueous solution for up to 13 weeks. However, different decoration altered the tumor selectivity of the SeNPs, while gastric adenocarcinoma AGS cells showed relative highest sensitivity. Moreover, PTR-SeNPs demonstrated potent in vivo antitumor, by inducing caspases- and mitochondria-mediated apoptosis, but showed no obvious toxicity to nomal organs. Taken together, this study offers insights into how surface decoration can tune the cancer selectivity of SeNPs and provides a basis for engineering particles with increased anticancer efficacy.
Collapse
Affiliation(s)
- Delong Zeng
- The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Jianfu Zhao
- The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Kar-Him Luk
- Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hong Kong , China
| | - Siu-To Cheung
- Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hong Kong , China
| | - Ka-Hing Wong
- Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hong Kong , China
| | - Tianfeng Chen
- The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
8
|
Rodrigues J, Saba S, Joussef AC, Rafique J, Braga AL. KIO3
-Catalyzed C(sp2
)-H Bond Selenylation/Sulfenylation of (Hetero)arenes: Synthesis of Chalcogenated (Hetero)arenes and their Evaluation for Anti-Alzheimer Activity. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800346] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Janh Rodrigues
- Departamento de Química; Universidade Federal de Santa Catarina - UFSC; Florianópolis 88040-900, SC Brazil
| | - Sumbal Saba
- Departamento de Química; Universidade Federal de Santa Catarina - UFSC; Florianópolis 88040-900, SC Brazil
| | - Antônio C. Joussef
- Departamento de Química; Universidade Federal de Santa Catarina - UFSC; Florianópolis 88040-900, SC Brazil
| | - Jamal Rafique
- Departamento de Química; Universidade Federal de Santa Catarina - UFSC; Florianópolis 88040-900, SC Brazil
- Instituto de Química; Universidade Federal do Mato Grosso do Sul - UFMS; Campo Grande 79074-460, MS Brasil
| | - Antonio L. Braga
- Departamento de Química; Universidade Federal de Santa Catarina - UFSC; Florianópolis 88040-900, SC Brazil
| |
Collapse
|
9
|
Lin H, Wang Y, Lai H, Li X, Chen T. Iron(II)-Polypyridyl Complexes Inhibit the Growth of Glioblastoma Tumor and Enhance TRAIL-Induced Cell Apoptosis. Chem Asian J 2018; 13:2730-2738. [PMID: 29963768 DOI: 10.1002/asia.201800862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/26/2018] [Indexed: 12/14/2022]
Abstract
A promising cancer-targeting agent for the induction of apoptosis in tumor necrosis factor (TNF) proteins, the TNF-related apoptosis-inducing ligand (TRAIL) ligand, has found limited applications in the treatment of cancer cells, owing to its resistance by cancer cell lines. Therefore, the rational design of anticancer agents that could sensitize cancer cells towards TRAIL is of great significance. Herein, we report that synthetic iron(II)-polypyridyl complexes are capable of inhibiting the proliferation of glioblastoma cancer cells and efficiently enhancing TRAIL-induced cell apoptosis. Mechanistic studies demonstrated that the synthesized complexes induced cancer-cell apoptosis through triggering the activation of p38 and p53 and inhibiting the activation of ERK. Moreover, uPA and MMP-2/MMP-9, among the most important metastatic regulatory proteins, were also found to be significantly alerted after the treatment. Furthermore, we also found that tumor growth in nude mice was significantly inhibited by iron complex Fe2 through the induction of apoptosis without clear systematic toxicity, as indicated by histological analysis. Taken together, this study provides evidence for the further development of metal-based anticancer agents and chemosensitizers of TRAIL for the treatment of human glioblastoma cancer cells.
Collapse
Affiliation(s)
- Hao Lin
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Yifan Wang
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Haoqiang Lai
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, P. R. China
| | - Tianfeng Chen
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
10
|
Liu T, Shi C, Duan L, Zhang Z, Luo L, Goel S, Cai W, Chen T. A highly hemocompatible erythrocyte membrane-coated ultrasmall selenium nanosystem for simultaneous cancer radiosensitization and precise antiangiogenesis. J Mater Chem B 2018; 6:4756-4764. [PMID: 30450208 PMCID: PMC6234506 DOI: 10.1039/c8tb01398e] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radiotherapy is a vitally important strategy for clinical treatment of malignant cancers. Therefore, rational design and development of radiosensitizers that could enhance radiotherapeutic efficacy has attracted tremendous attention. Antiangiogenesis therapy could be a potentially effective strategy to regulate tumor growth and metastasis due to angiogenesis plays a pivotal role for tumor growth, invasion and metastasis to other organs. Herein, we have rationally designed a smart and effective nanosystem by combining ultrasmall selenium nanoparticles and bevacizumab (Avastin™, Av), for simultaneous radiotherapy and antiangiogenic therapy of cancer. The nanosystem was further coated with red blood cell (RBC) membranes to develop the final construct, RBCs@Se/Av. The RBC membrane coating effectively prolongs the blood circulation time and reduces the elimination of the nanosystem by autoimmune responses. As expected, RBCs@Se/Av, when irradiated with X-ray demonstrated potent anticancer and antiangiogenesis response in vitro and in vivo, as evidenced by strong inhibition of A375 tumor growth in nude mice, without causing any obvious histological damage to the non-target major organs. Taken together, this study demonstrates an effective strategy for design of smart Se-based nanosystem decorated with RBC membrane for simultaneous cancer radiosensitization and precise antiangiogenesis.
Collapse
Affiliation(s)
- Ting Liu
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Changzheng Shi
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Linqi Duan
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zehang Zhang
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Liangping Luo
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shreya Goel
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Tianfeng Chen
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Zeng D, Deng S, Sang C, Zhao J, Chen T. Rational Design of Cancer-Targeted Selenadiazole Derivative as Efficient Radiosensitizer for Precise Cancer Therapy. Bioconjug Chem 2018; 29:2039-2049. [PMID: 29771500 DOI: 10.1021/acs.bioconjchem.8b00247] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Delong Zeng
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shulin Deng
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Chengcheng Sang
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Jianfu Zhao
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Lai H, Fu X, Sang C, Hou L, Feng P, Li X, Chen T. Selenadiazole Derivatives Inhibit Angiogenesis-Mediated Human Breast Tumor Growth by Suppressing the VEGFR2-Mediated ERK and AKT Signaling Pathways. Chem Asian J 2018; 13:1447-1457. [DOI: 10.1002/asia.201800110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/08/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Haoqiang Lai
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Xiaoyan Fu
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Chengcheng Sang
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Liyuan Hou
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Pengju Feng
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition; Jinan University; Guangzhou 510632 China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| |
Collapse
|
13
|
Yang Y, Xie Q, Zhao Z, He L, Chan L, Liu Y, Chen Y, Bai M, Pan T, Qu Y, Ling L, Chen T. Functionalized Selenium Nanosystem as Radiation Sensitizer of 125I Seeds for Precise Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25857-25869. [PMID: 28718286 DOI: 10.1021/acsami.7b07167] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although radiotherapy has been extensively applied in cancer treatment, external beam radiation therapy is still unable to avoid damage to adjacent normal tissues in the process of delivering a sufficient radiation dose to the tumor sites of patients. To overcome this limitation, chemoradiotherapy, as a combination of chemotherapy and radiotherapy of a radioactive seed, has been proposed to decrease the damage to tumor-surrounding tissues and enhance the radiosensitivity of solid tumors. In this study, we designed and synthesized folic acid-conjugated selenium nanoparticles (FA@SeNPs) as a cancer-targeting agent that could be synergistically enhanced by radioactive 125I seeds to realize anticancer efficacy and inhibited colony formation ability. Interestingly, when compared with X-ray irradiation, 125I seeds demonstrate a larger synergistic effect with the FA@SeNPs, drastically increasing reactive oxygen species overproduction to trigger apoptosis and influencing the cell cycle distribution in human breast cancer cells, inducing DNA damage and activating the mitogen-activated protein kinase and p53 signaling pathways. Moreover, this combination treatment demonstrates better in vivo antitumor activity and lower systemic toxicity. Therefore, this study demonstrates a new strategy for using functionalized SeNPs as a radiation sensitizer for 125I seeds for cancer therapy.
Collapse
Affiliation(s)
- Yahui Yang
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Qiang Xie
- The Third Affiliated Hospital, Sun Yat-sen University , Guangzhou 510630, China
| | - Zhennan Zhao
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Lizhen He
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Leung Chan
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Yingxiang Liu
- 421 Hospital of Chinese People's Liberation Army , Guangzhou 510318, China
| | - Yongle Chen
- 421 Hospital of Chinese People's Liberation Army , Guangzhou 510318, China
| | - Mingjun Bai
- The Third Affiliated Hospital, Sun Yat-sen University , Guangzhou 510630, China
| | - Tao Pan
- The Third Affiliated Hospital, Sun Yat-sen University , Guangzhou 510630, China
| | - Yanni Qu
- 421 Hospital of Chinese People's Liberation Army , Guangzhou 510318, China
| | - Long Ling
- 421 Hospital of Chinese People's Liberation Army , Guangzhou 510318, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| |
Collapse
|
14
|
Zhu H, Zhou B, Chan L, Du Y, Chen T. Transferrin-functionalized nanographene oxide for delivery of platinum complexes to enhance cancer-cell selectivity and apoptosis-inducing efficacy. Int J Nanomedicine 2017; 12:5023-5038. [PMID: 28761342 PMCID: PMC5516881 DOI: 10.2147/ijn.s139207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rational design and construction of delivery nanosystems for anticancer metal complexes is a crucial strategy to improve solubility under physiological conditions and permeability and retention behavior in tumor cells. Therefore, in this study, we designed and synthesize a transferrin (Tf)-conjugated nanographene oxide (NGO) nanosystem as a cancer-targeted nanocarrier of Pt complexes (Tf-NGO@Pt). This nanodelivery system exhibited good solubility under physiological conditions. Moreover, Tf-NGO@Pt showed higher anticancer efficacy against MCF human breast cancer cells than the free Pt complex, and effectively inhibited cancer-cell migration and invasion, with involvement of reactive oxygen species overproduction. In addition, nanolization also enhanced the penetration ability and inhibitory effect of the Pt complex toward MCF7 breast cancer-cell tumor spheroids. The enhancement of anticancer efficacy was positively correlated with increased cellular uptake and cellular drug retention. This study provides a new strategy to facilitate the future application of metal complexes in cancer therapy.
Collapse
Affiliation(s)
- Hai Zhu
- Department of Internal Medicine and Orthopedics, Guangdong Provincial Hospital of Traditional Chinese Medicine
| | - Binwei Zhou
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Leung Chan
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Yanxin Du
- Department of Internal Medicine and Orthopedics, Guangdong Provincial Hospital of Traditional Chinese Medicine
| | - Tianfeng Chen
- Department of Internal Medicine and Orthopedics, Guangdong Provincial Hospital of Traditional Chinese Medicine
| |
Collapse
|