1
|
Annušová A, Labudová M, Truchan D, Hegedűšová V, Švajdlenková H, Mičušík M, Kotlár M, Pribusová Slušná L, Hulman M, Salehtash F, Kálosi A, Csáderová L, Švastová E, Šiffalovič P, Jergel M, Pastoreková S, Majková E. Selective Tumor Hypoxia Targeting Using M75 Antibody Conjugated Photothermally Active MoO x Nanoparticles. ACS OMEGA 2023; 8:44497-44513. [PMID: 38046334 PMCID: PMC10688043 DOI: 10.1021/acsomega.3c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/24/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
Photothermal therapy (PTT) mediated at the nanoscale has a unique advantage over currently used cancer treatments, by being spatially highly specific and minimally invasive. Although PTT combats traditional tumor treatment approaches, its clinical implementation has not yet been successful. The reasons for its disadvantage include an insufficient treatment efficiency or low tumor accumulation. Here, we present a promising new PTT platform combining a recently emerged two-dimensional (2D) inorganic nanomaterial, MoOx, and a tumor hypoxia targeting element, the monoclonal antibody M75. M75 specifically binds to carbonic anhydrase IX (CAIX), a hypoxia marker associated with many solid tumors with a poor prognosis. The as-prepared nanoconjugates showed highly specific binding to cancer cells expressing CAIX while being able to produce significant photothermal yield after irradiation with near-IR wavelengths. Small aminophosphonic acid linkers were recognized to be more effective over the combination of poly(ethylene glycol) chain and biotin-avidin-biotin bridge in constructing a PTT platform with high tumor-binding efficacy. The in vitro cellular uptake of nanoconjugates was visualized by high-resolution fluorescence microscopy and label-free live cell confocal Raman microscopy. The key to effective cancer treatment may be the synergistic employment of active targeting and noninvasive, tumor-selective therapeutic approaches, such as nanoscale-mediated PTT. The use of active targeting can streamline nanoparticle delivery increasing photothermal yield and therapeutic success.
Collapse
Affiliation(s)
- Adriana Annušová
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| | - Martina Labudová
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
- Institute
of Virology, Biomedical Research Center,
Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
- Faculty
of Natural Sciences, Comenius University
in Bratislava, Ilkovičova
6, 842 15 Bratislava, Slovakia
| | - Daniel Truchan
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Université
Sorbonne Paris Nord, Université Paris
Cité, Laboratory for Vascular Translational Science, LVTS,
INSERM, UMR 1148, Bobigny F-93017, France
| | - Veronika Hegedűšová
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Faculty
of Natural Sciences, Comenius University
in Bratislava, Ilkovičova
6, 842 15 Bratislava, Slovakia
| | - Helena Švajdlenková
- Faculty
of Natural Sciences, Comenius University
in Bratislava, Ilkovičova
6, 842 15 Bratislava, Slovakia
- Polymer
Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Matej Mičušík
- Polymer
Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Mário Kotlár
- Centre
for Nanodiagnostics of Materials, Slovak
University of Technology in Bratislava, Vazovova 5, 812 43 Bratislava, Slovakia
| | - Lenka Pribusová Slušná
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
- Institute
of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Martin Hulman
- Institute
of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Farnoush Salehtash
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| | - Anna Kálosi
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| | - Lucia Csáderová
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
- Institute
of Virology, Biomedical Research Center,
Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Eliška Švastová
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
- Institute
of Virology, Biomedical Research Center,
Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Peter Šiffalovič
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| | - Matej Jergel
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| | - Silvia Pastoreková
- Institute
of Virology, Biomedical Research Center,
Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Eva Majková
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| |
Collapse
|
2
|
Bigham A, Raucci MG, Zheng K, Boccaccini AR, Ambrosio L. Oxygen-Deficient Bioceramics: Combination of Diagnosis, Therapy, and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302858. [PMID: 37259776 DOI: 10.1002/adma.202302858] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Indexed: 06/02/2023]
Abstract
The journey of ceramics in medicine has been synchronized with an evolution from the first generation-alumina, zirconia, etc.-to the third -3D scaffolds. There is an up-and-coming member called oxygen-deficient or colored bioceramics, which have recently found their way through biomedical applications. The oxygen vacancy steers the light absorption toward visible and near infrared regions, making the colored bioceramics multifunctional-therapeutic, diagnostic, and regenerative. Oxygen-deficient bioceramics are capable of turning light into heat and reactive oxygen species for photothermal and photodynamic therapies, respectively, and concomitantly yield infrared and photoacoustic images. Different types of oxygen-deficient bioceramics have been recently developed through various synthesis routes. Some of them like TiO2- x , MoO3- x , and WOx have been more investigated for biomedical applications, whereas the rest have yet to be scrutinized. The most prominent advantage of these bioceramics over the other biomaterials is their multifunctionality endowed with a change in the microstructure. There are some challenges ahead of this category discussed at the end of the present review. By shedding light on this recently born bioceramics subcategory, it is believed that the field will undergo a big step further as these platforms are naturally multifunctional.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples, 80125, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
| | - Kai Zheng
- Jiangsu Key Laboratory of Oral Diseases and Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Aldo R Boccaccini
- Institute for Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
| |
Collapse
|
3
|
Zhou M, Liu Y, Su Y, Su Q. Plasmonic Oxygen Defects in MO 3- x (M = W or Mo) Nanomaterials: Synthesis, Modifications, and Biomedical Applications. Adv Healthc Mater 2021; 10:e2101331. [PMID: 34549537 DOI: 10.1002/adhm.202101331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Indexed: 12/31/2022]
Abstract
Nanomedicine is a promising technology with many advantages and provides exciting opportunities for cancer diagnosis and therapy. During recent years, the newly developed oxygen-deficiency transition metal oxides MO3- x (M = W or Mo) have received significant attention due to the unique optical properties, such as strong localized surface plasmon resonance (LSPR) , tunable and broad near-IR absorption, high photothermal conversion efficiency, and large X-ray attenuation coefficient. This review presents an overview of recent advances in the development of MO3- x nanomaterials for biomedical applications. First, the fundamentals of the LSPR effect are introduced. Then, the preparation and modification methods of MO3- x nanomaterials are summarized. In addition, the biological effects of MO3- x nanomaterials are highlighted and their applications in the biomedical field are outlined. This includes imaging modalities, cancer treatment, and antibacterial capability. Finally, the prospects and challenges of MO3- x and MO3- x -based nanomaterial for fundamental studies and clinical applications are also discussed.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| | - Yachong Liu
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| | - Yan Su
- Genome Institute of Singapore Agency of Science Technology and Research Singapore 138672 Singapore
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| |
Collapse
|
4
|
Wang X, Chen Q, Shen C, Dai J, Zhu C, Zhang J, Wang Z, Song Q, Wang L, Li H, Wang Q, Liu Z, Luo Z, Huang X, Huang W. Spatially Controlled Preparation of Layered Metallic-Semiconducting Metal Chalcogenide Heterostructures. ACS NANO 2021; 15:12171-12179. [PMID: 34269058 DOI: 10.1021/acsnano.1c03688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spatially controlled preparation of heterostructures composed of layered materials is important in achieving interesting properties. Although vapor-phased deposition methods can prepare vertical and lateral heterostructures, liquid-phased methods, which can enable scalable production and further solution processes, have shown limited controllability. Herein, we demonstrate by using wet chemical methods that metallic Sn0.5Mo0.5S2 nanosheets can be deposited epitaxially on the edges of semiconducting SnS2 nanoplates to form SnS2/Sn0.5Mo0.5S2 lateral heterostructures or coated on both the edges and basal surfaces of SnS2 to give SnS2@Sn0.5Mo0.5S2 core@shell heterostructures. They also showed good light-to-heat conversion ability due to the metallic property of Sn0.5Mo0.5S2. In particular, the core@shell heterostructure showed a higher photothermal conversion efficiency than the lateral counterpart, largely due to its randomly oriented and polycrystalline Sn0.5Mo0.5S2 layers with larger interfacing area for multiple internal light scattering.
Collapse
Affiliation(s)
- Xiaoshan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Qian Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Chuang Shen
- Key Laboratory for Organic Electronic & Information Displays (KLOEID) and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jie Dai
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Chao Zhu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 640260, Singapore
| | - Jinyan Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Zhiwei Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Qingsong Song
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Lin Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Hai Li
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Qiang Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 640260, Singapore
| | - Zhimin Luo
- Key Laboratory for Organic Electronic & Information Displays (KLOEID) and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| |
Collapse
|
5
|
Annušová A, Bodík M, Hagara J, Kotlár M, Halahovets Y, Mičušík M, Chlpík J, Cirák J, Hofbauerová M, Jergel M, Majková E, Šiffalovič P. On the extraction of MoO x photothermally active nanoparticles by gel filtration from a byproduct of few-layer MoS 2 exfoliation. NANOTECHNOLOGY 2020; 32:045708. [PMID: 33140739 DOI: 10.1088/1361-6528/abc035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gel filtration is a versatile technique employed for biological molecules and nanoparticles, offering their reproducible classification based on size and shape. Colloidal nanoparticles are of significant interest in biomedical applications due to a large number of solution-based bioconjugation procedures. Nevertheless, the inherent polydispersity of the nanoparticles produced by various techniques necessitates the employment of high yield separation and purification techniques. Here we demonstrate the employment of gel filtration on non-stoichiometric plasmonic MoO x nanoparticles, prepared by an oxidation process during liquid-phase exfoliation of few-layer MoS2 nanosheets. This resulted in the separation of two types of MoO x particles, in the form of two different chromatographic fractions. They showed different sizes, morphological and optical properties. The fraction containing smaller particles with diameters of 1-4 nm, exhibited an increased absorbance peak in the near IR region and responded with a significant temperature increase to laser irradiation at the wavelength close to the maximal absorption. The fraction with the larger particles from 3 up to 10 nm, showed weak photoluminescence and a preferred orientation upon the deposition on a planar substrate. However, it had no absorbance in the near IR compared to the former fraction. According to our knowledge, this is the first time that the gel filtration was applied to the separation of molybdenum oxide nanomaterials. This step ensured the isolation of plasmonic MoO x nanoparticles suitable for further bioconjugation and target photothermal treatment.
Collapse
Affiliation(s)
- Adriana Annušová
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia. Centre for Advanced Material Application, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Guo C, Yan P, Zhu C, Wei C, Liu W, Wu W, Wang X, Zheng L, Wang J, Du Y, Chen J, Xu Q. Amorphous MoO 3-x nanosheets prepared by the reduction of crystalline MoO 3 by Mo metal for LSPR and photothermal conversion. Chem Commun (Camb) 2019; 55:12527-12530. [PMID: 31576838 DOI: 10.1039/c9cc06704c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Amorphous MoO3-x with enhanced LSPR has been fabricated successfully by introducing Mo atoms into the interlayers of MoO3 nanosheets via a hydrothermal method. The inserted Mo atom could bond with inherent Mo atoms and further form a distorted atomic configuration structure. Thus, the amorphous MoO3-x possesses a relatively excellent photothermal conversion efficiency of 61.79%.
Collapse
Affiliation(s)
- Cang Guo
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China.
| | - Pengfei Yan
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China.
| | - Chuanhui Zhu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China.
| | - Cong Wei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China.
| | - Wei Liu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China.
| | - Wenzhuo Wu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China.
| | - Xuzhe Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China.
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiaou Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi Du
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, Innovation Campus University of Wollongong, Wollongong, NSW 2500, Australia
| | - Jun Chen
- Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus University of Wollongong, Wollongong, NSW 2500, Australia
| | - Qun Xu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China. and Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
7
|
Bodík M, Annušová A, Hagara J, Mičušík M, Omastová M, Kotlár M, Chlpík J, Cirák J, Švajdlenková H, Anguš M, Roldán AM, Veis P, Jergel M, Majkova E, Šiffalovič P. An elevated concentration of MoS2 lowers the efficacy of liquid-phase exfoliation and triggers the production of MoOx nanoparticles. Phys Chem Chem Phys 2019; 21:12396-12405. [DOI: 10.1039/c9cp01951k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The oxidation of MoS2 with a simultaneous decrease of MoS2 content.
Collapse
|
8
|
Su L, Xiong Y, Chen Z, Duan Z, Luo Y, Zhu D, Ma X. MoO3 nanosheet-assisted photochemical reduction synthesis of Au nanoparticles for surface-enhanced Raman scattering substrates. SENSORS AND ACTUATORS B: CHEMICAL 2019; 279:320-326. [DOI: 10.1016/j.snb.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
|
9
|
Two-dimensional amorphous NiO as a plasmonic photocatalyst for solar H 2 evolution. Nat Commun 2018; 9:4036. [PMID: 30279416 PMCID: PMC6168506 DOI: 10.1038/s41467-018-06456-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/28/2018] [Indexed: 11/15/2022] Open
Abstract
Amorphous materials are usually evaluated as photocatalytically inactive due to the amorphous nature-induced self-trapping of tail states, in spite of their achievements in electrochemistry. NiO crystals fail to act as an individual reactor for photocatalytic H2 evolution because of the intrinsic hole doping, regardless of their impressive cocatalytic ability for proton/electron transfer. Here we demonstrate that two-dimensional amorphous NiO nanostructure can act as an efficient and robust photocatalyst for solar H2 evolution without any cocatalysts. Further, the antenna effect of surface plasmon resonance can be introduced to construct an incorporate antenna-reactor structure by increasing the electron doping. The solar H2 evolution rate is improved by a factor of 19.4 through the surface plasmon resonance-mediated charge releasing. These findings thus open a door to applications of two-dimensional amorphous NiO as an advanced photocatalyst. While photocatalysis offers a means to store solar energy as chemical fuels, photocatalysts typically require crystalline structures and expensive noble-metal cocatalysts. Here, authors prepare 2D amorphous nano-nickel oxide capable of plasmonic, photodriven H2 evolution without cocatalysts.
Collapse
|
10
|
Li H, Xu Q, Wang X, Liu W. Ultrasensitive Surface-Enhanced Raman Spectroscopy Detection Based on Amorphous Molybdenum Oxide Quantum Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801523. [PMID: 29882238 DOI: 10.1002/smll.201801523] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/05/2018] [Indexed: 06/08/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) based on plasmonic semiconductive material has been proved to be an efficient tool to detect trace of substances, while the relatively weak plasmon resonance compared with noble metal materials restricts its practical application. Herein, for the first time a facile method to fabricate amorphous Hx MoO3 quantum dots with tunable plasmon resonance is developed by a controlled oxidization route. The as-prepared amorphous Hx MoO3 quantum dots show tunable plasmon resonance in the region of visible and near-infrared light. Moreover, the tunability induced by SC CO2 is analyzed by a molecule kinetic theory combined with a molecular thermodynamic model. More importantly, the ultrahigh enhancement factor of amorphous Hx MoO3 quantum dots detecting on methyl blue can be up to 9.5 × 105 with expending the limit of detection to 10-9 m. Such a remarkable porperty can also be found in this Hx MoO3 -based sensor with Rh6G and RhB as probe molecules, suggesting that the amorphous Hx MoO3 quantum dot is an efficient candidate for SERS on molecule detection in high precision.
Collapse
Affiliation(s)
- Hao Li
- College of Materials Science & Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qun Xu
- College of Materials Science & Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xuzhe Wang
- College of Materials Science & Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Wei Liu
- College of Materials Science & Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
11
|
Zhu C, Xu Q. Amorphous Materials for Enhanced Localized Surface Plasmon Resonances. Chem Asian J 2018; 13:730-739. [DOI: 10.1002/asia.201701722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Chuanhui Zhu
- College of Materials Science & Engineering; Zhengzhou University; Zhengzhou 450052 P. R. China
| | - Qun Xu
- College of Materials Science & Engineering; Zhengzhou University; Zhengzhou 450052 P. R. China
| |
Collapse
|
12
|
Lee SH, Nishi H, Tatsuma T. Plasmonic behaviour and plasmon-induced charge separation of nanostructured MoO 3-x under near infrared irradiation. NANOSCALE 2018; 10:2841-2847. [PMID: 29362747 DOI: 10.1039/c7nr09477a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plasmon-induced charge separation (PICS) allows direct conversion of localized surface plasmon resonance (LSPR) to electron flows and photoelectrochemical reactions. However, PICS has only been achieved using plasmonic noble metal nanoparticles, not with compound nanoparticles. In order to achieve compound PICS, MoO3-x nanostructures were prepared that exhibit LSPR in the near infrared region by using metal oxides or metal nanoparticles as templates. Solid-state cells based on the MoO3-x nanostructure were developed. Their photoresponse to 700-1400 nm infrared light was investigated and analyzed on the basis of their PICS mechanisms.
Collapse
Affiliation(s)
- Seung Hyuk Lee
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | | | | |
Collapse
|