1
|
Liu S, Gan Z, Jiang M, Liao Q, Lu Y, Wang H, Xue Z, Chen Z, Zhang Y, Yang X, Duan C, Jin Y. Selective Arene Photonitration via Iron-Complex β-Homolysis. JACS AU 2024; 4:4899-4909. [PMID: 39735909 PMCID: PMC11672136 DOI: 10.1021/jacsau.4c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/31/2024]
Abstract
Nitroaromatics, as an important member and source of nitrogen-containing aromatics, is bringing enormous economic benefits in fields of pharmaceuticals, dyes, pesticides, functional materials, fertilizers, and explosives. Nonetheless, the notoriously polluting nitration industry, which suffers from excessive discharge of fumes and waste acids, poor functional group tolerance, and tremendous purification difficulty, renders mild, efficient, and environmentally friendly nitration a formidable challenge. Herein, we develop a visible-light-driven biocompatible arene C-H nitration strategy with good efficiency and regioselectivity, marvelous substrate applicability and functional group tolerance, and wide application in scale-up synthesis, total synthesis, and late-stage functionalization. A nitryl radical delivered through unusual β-homolysis of a photoexcited ferric-nitrate complex is proposed to be the key nitrification reagent in this system.
Collapse
Affiliation(s)
- Shuyang Liu
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyu Gan
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Min Jiang
- College
of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Qian Liao
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yusheng Lu
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Hongyao Wang
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhiyan Xue
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyang Chen
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yongqiang Zhang
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Xiaobo Yang
- Institute
of Catalysis for Energy and Environment, College of Chemistry and
Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Chunying Duan
- State
Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China
| | - Yunhe Jin
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Chen XH, Ma DD, Gao X, Li YM, Jiang DB, Ma C, Cui HL. Nitration of Pyrrolo[2,1- a]isoquinolines. J Org Chem 2023; 88:4649-4661. [PMID: 36947692 DOI: 10.1021/acs.joc.3c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
We have successfully modified a series of pyrrolo[2,1-a]isoquinolines via direct nitration under mild reaction conditions. Easily accessible nitrates including CAN, Cu(NO3)2·H2O, and Fe(NO3)3·9H2O all can serve as effective nitrating reagents for functionalizing pyrrolo[2,1-a]isoquinolines. Various nitro-bearing pyrrolo[2,1-a]isoquinolines have been efficiently prepared in acceptable to good yields.
Collapse
Affiliation(s)
- Xiao-Hui Chen
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| | - Dan-Dan Ma
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Xin Gao
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| | - Yun-Meng Li
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| | - Da-Bo Jiang
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| | - Chao Ma
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Hai-Lei Cui
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| |
Collapse
|
3
|
Rossi R, Ciofalo M. Palladium-Catalysed Intermolecular Direct C–H Bond Arylation of Heteroarenes with Reagents Alternative to Aryl Halides: Current State of the Art. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220201124008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Abstract: This unprecedented review with 322 references provides a critical up-to-date picture of the Pd-catalysed intermolecular direct C–H bond arylation of heteroarenes with arylating reagents alternative to aryl halides that include aryl sulfonates (aryl triflates, tosylates, mesylates, and imidazole-1-sulfonates), diaryliodonium salts, [(diacetoxy)iodo]arenes, arenediazonium salts, 1-aryltriazenes, arylhydrazines and N’-arylhydrazides, arenesulfonyl chlorides, sodium arenesulfinates, arenesulfinic acids, and arenesulfonohydrazides. Particular attention has been paid to summarise the preparation of the various arylating reagents and to highlight the practicality, versatility, and limitations of the various developed arylation protocols, also comparing their results with those achieved in analogous Pd-catalysed arylation reactions involving the use of aryl halides as electrophiles. Mechanistic proposals have also been briefly summarised and discussed. However, data concerning Pd-catalysed direct C–H bond arylations involving the C–H bonds of aryl substituents of the examined heteroarene derivatives have not been taken into account.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 3, I-56124 Pisa, Italy
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Viale delle Scienze, Edificio 4, I-90128, Palermo, Italy
| |
Collapse
|
4
|
Wang H, Ge G, Gao W, Luo J, Tang K. Selective C3–H nitration of 2-sulfanilamidopyridines with tert-butyl nitrite. Org Chem Front 2022. [DOI: 10.1039/d2qo00679k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A selective C3–H nitration of bioactive 2-sulfanilamidopyridine derivatives, including corticosteroid 11-β-dehydrogenase isozyme, secretory phospholipase A2 inhibitor and human neutrophil elastase inhibitor, has been reported.
Collapse
Affiliation(s)
- Huifang Wang
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Guoping Ge
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Wenqing Gao
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Junfei Luo
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Keqi Tang
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
5
|
Banjare SK, Nanda T, Pati BV, Biswal P, Ravikumar PC. O-Directed C-H functionalization via cobaltacycles: a sustainable approach for C-C and C-heteroatom bond formations. Chem Commun (Camb) 2021; 57:3630-3647. [PMID: 33870349 DOI: 10.1039/d0cc08199j] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on providing comprehensive highlights of the recent advances in the field of cobalt-catalysed C-H functionalization and related synthetic concepts, relying on these through oxygen atom coordination. In recent years, 3d transition metal (Fe, Co, Cu & Ni) catalysed C-H functionalization reactions have received immense attention on account of its higher abundance and low cost, as compared to noble metals such as Ir, Rh, Ru and Pd. Among the first-row transition metals, cobalt is one of the extensively used metals for sustainable synthesis due to its unique reactivity towards the functionalization of inert C-H bonds. The functionalization of the inert C-H bond necessitates a proximal directing group. In this context, strongly coordinating nitrogen atom directed C-H functionalizations have been well explored. Nevertheless, strongly coordinating nitrogen-containing scaffolds, such as pyridine, pyrimidine, and 8-aminoquinoline, have to be installed and removed in a separate process. In contrast, C-H functionalizations through weakly coordinating atoms, such as oxygen, are largely underdeveloped. Since the oxygen atom is a part of many readily available functional groups, such as aldehydes, ketones, carboxylic acids, and esters, it could be used as directing groups for selective C-H functionalization reactions without any modification. Thus, the use of 3d transition metals, such as cobalt, along with weakly coordinating (oxygen) directing groups for C-H functionalization reactions are more sustainable, especially for the large-scale production of pharmaceuticals in industries. During the last decade, notable progress has been made using this concept. Nonetheless, almost all the reports are restricted to the formation of C-C and C-N bond. Therefore, there is a wide scope for developing this area for the formation of other bonds, such as C-X (halogens), C-B, C-S, and C-Se.
Collapse
Affiliation(s)
- Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) HBNI, Bhubaneswar, Odisha 752050, India.
| | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- Siddharth S. Patel
- Department of Chemistry, School of Sciences Gujarat University Ahmedabad India
| | - Dhaval B. Patel
- Department of Chemistry, School of Sciences Gujarat University Ahmedabad India
| | - Hitesh D. Patel
- Department of Chemistry, School of Sciences Gujarat University Ahmedabad India
| |
Collapse
|
7
|
Kumar P, Nagtilak PJ, Kapur M. Transition metal-catalyzed C–H functionalizations of indoles. NEW J CHEM 2021. [DOI: 10.1039/d1nj01696b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarises a wide range of transformations on the indole skeleton, including arylation, alkenylation, alkynylation, acylation, nitration, borylation, and amidation, using transition-metal catalyzed C–H functionalization as the key step.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Prajyot Jayadev Nagtilak
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
8
|
Mehra MK, Sharma S, Rangan K, Kumar D. Substrate or Solvent-Controlled PdII
-Catalyzed Regioselective Arylation of Quinolin-4(1H
)-ones Using Diaryliodonium Salts: Facile Access to Benzoxocine and Aaptamine Analogues. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Manish K. Mehra
- Department of Chemistry; BITS Pilani; Pilani Campus 333031 Pilani Rajasthan India
| | - Shivani Sharma
- Department of Chemistry; BITS Pilani; Pilani Campus 333031 Pilani Rajasthan India
| | - Krishnan Rangan
- Department of Chemistry; BITS Pilani; Hyderabad Campus 500078 Secunderabad Telangana India
| | - Dalip Kumar
- Department of Chemistry; BITS Pilani; Pilani Campus 333031 Pilani Rajasthan India
| |
Collapse
|
9
|
Dahiya A, Sahoo AK, Alam T, Patel BK. tert
‐Butyl Nitrite (TBN), a Multitasking Reagent in Organic Synthesis. Chem Asian J 2019; 14:4454-4492. [DOI: 10.1002/asia.201901072] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Anjali Dahiya
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 India
| | - Ashish Kumar Sahoo
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 India
| | - Tipu Alam
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 India
| | - Bhisma K. Patel
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 India
| |
Collapse
|
10
|
Krylov IB, Budnikov AS, Lopat'eva ER, Nikishin GI, Terent'ev AO. Mild Nitration of Pyrazolin-5-ones by a Combination of Fe(NO 3 ) 3 and NaNO 2 : Discovery of a New Readily Available Class of Fungicides, 4-Nitropyrazolin-5-ones. Chemistry 2019; 25:5922-5933. [PMID: 30834586 DOI: 10.1002/chem.201806172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/24/2019] [Indexed: 02/02/2023]
Abstract
4-Nitropyrazolin-5-ones have been synthesized by the nitration of pyrazolin-5-ones at room temperature by employing the Fe(NO3 )3 /NaNO2 system. The method demonstrated selectivity towards the 4-position of pyrazolin-5-ones even in the presence of NPh and allyl substituents, which are sensitive to nitration. It was shown that other systems containing FeIII and nitrites, namely Fe(NO3 )3 /tBuONO, Fe(ClO4 )3 /NaNO2 , and Fe(ClO4 )3 /tBuONO, were also effective. Presumably, FeIII oxidizes the nitrite (NaNO2 or tBuONO) to form the NO2 free radical, which serves as the nitrating agent for pyrazolin-5-ones. The synthesized 4-nitropyrazolin-5-ones were discovered to be a new class of fungicides. Their in vitro activities against phytopathogenic fungi were found comparable or even superior to those of commercial fungicides (fluconazole, clotrimazole, triadimefon, and kresoxim-methyl). These results represent a promising starting point for the development of a new type of plant protection agents that can be easily synthesized from widely available reagents.
Collapse
Affiliation(s)
- Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of, Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation.,All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow Region, 143050, Russian Federation
| | - Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of, Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation.,All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow Region, 143050, Russian Federation.,Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, 125047, Russian Federation
| | - Elena R Lopat'eva
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of, Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation.,Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, 125047, Russian Federation
| | - Gennady I Nikishin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of, Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of, Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation.,All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow Region, 143050, Russian Federation.,Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, 125047, Russian Federation
| |
Collapse
|
11
|
Song LR, Fan Z, Zhang A. Recent advances in transition metal-catalyzed C(sp2)–H nitration. Org Biomol Chem 2019; 17:1351-1361. [DOI: 10.1039/c8ob02750a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review updates advances of direct C(sp2)–H nitration for the synthesis of nitroaromatic compounds and the mechanisms during the past decade.
Collapse
Affiliation(s)
- Li-Rui Song
- CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica (SIMM)
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Zhoulong Fan
- CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica (SIMM)
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica (SIMM)
- Chinese Academy of Sciences
- Shanghai 201203
- China
| |
Collapse
|
12
|
F. Tietze L, A. Khan T. Synthesis of a Poly-Heterocyclic Tetra-Substituted Alkene via a Palladium-Catalyzed Four-Fold Domino Reaction for the Design of Polymeric Molecular Switches. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1474] [Impact Index Per Article: 210.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
14
|
Lotz F, Kahle K, Kangani M, Senthilkumar S, Tietze LF. Domino C-H Activation Reactions through Proximity Effects. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Florian Lotz
- Institute of Organic und Biomolecular Chemistry; Georg-August-University of Göttingen; Tammannstr. 2 37077 Göttingen Germany
| | - Klaus Kahle
- Institute of Organic und Biomolecular Chemistry; Georg-August-University of Göttingen; Tammannstr. 2 37077 Göttingen Germany
| | - Mehrnoush Kangani
- Institute of Organic und Biomolecular Chemistry; Georg-August-University of Göttingen; Tammannstr. 2 37077 Göttingen Germany
| | - Soundararasu Senthilkumar
- Institute of Organic und Biomolecular Chemistry; Georg-August-University of Göttingen; Tammannstr. 2 37077 Göttingen Germany
| | - Lutz F. Tietze
- Institute of Organic und Biomolecular Chemistry; Georg-August-University of Göttingen; Tammannstr. 2 37077 Göttingen Germany
| |
Collapse
|
15
|
|
16
|
Ujwaldev SM, Harry NA, Divakar MA, Anilkumar G. Cobalt-catalyzed C–H activation: recent progress in heterocyclic chemistry. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01418c] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cobalt-catalyzed C–H activation has gone through some major advancements in the past couple of decades.
Collapse
Affiliation(s)
| | - Nissy Ann Harry
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India 686560
| | | | - Gopinathan Anilkumar
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India 686560
- Advanced Molecular Materials Research Centre (AMMRC)
| |
Collapse
|