1
|
Islam MT, Jang NH, Lee HJ. Natural Products as Regulators against Matrix Metalloproteinases for the Treatment of Cancer. Biomedicines 2024; 12:794. [PMID: 38672151 PMCID: PMC11048580 DOI: 10.3390/biomedicines12040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Cancers are currently the major cause of mortality in the world. According to previous studies, matrix metalloproteinases (MMPs) have an impact on tumor cell proliferation, which could lead to the onset and progression of cancers. Therefore, regulating the expression and activity of MMPs, especially MMP-2 and MMP-9, could be a promising strategy to reduce the risk of cancers. Various studies have tried to investigate and understand the pathophysiology of cancers to suggest potent treatments. In this review, we summarize how natural products from marine organisms and plants, as regulators of MMP-2 and MMP-9 expression and enzymatic activity, can operate as potent anticancer agents.
Collapse
Affiliation(s)
- Md. Towhedul Islam
- Department of Chemistry, Faculty of Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Nak Han Jang
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
2
|
Nguyen YT, Kim N, Lee HJ. Metal Complexes as Promising Matrix Metalloproteinases Regulators. Int J Mol Sci 2023; 24:ijms24021258. [PMID: 36674771 PMCID: PMC9861486 DOI: 10.3390/ijms24021258] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Nowadays, cancers and dementia, such as Alzheimer's disease, are the most fatal causes of death. Many studies tried to understand the pathogenesis of those diseases clearly and develop a promising way to treat the diseases. Matrix metalloproteinases (MMPs) have been reported to be involved in the pathology of cancers and AD through tumor cell movement and amyloid degradation. Therefore, control of the levels and actions of MMPs, especially MMP-2 and MMP-9, is necessary to care for and/or cure cancer and AD. Various molecules have been examined for their potential application as regulators of MMPs expression and activity. Among the molecules, multiple metal complexes have shown advantages, including simple synthesis, less toxicity and specificity toward MMPs in cancer cells or in the brain. In this review, we summarize the recent studies and knowledge of metal complexes (e.g., Pt-, Ru-, Au-, Fe-, Cu-, Ni-, Zn-, and Sn-complexes) targeting MMPs and their potentials for treating and/or caring the most fatal human diseases, cancers and AD.
Collapse
Affiliation(s)
- Yen Thi Nguyen
- Department of Chemistry, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
- Correspondence: (N.K.); (H.J.L.)
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
- Correspondence: (N.K.); (H.J.L.)
| |
Collapse
|
3
|
Zhang W, He Y, Kang X, Wang C, Chen F, Kang Z, Yang S, Zhang R, Peng Y, Li W. Association between dietary minerals and glioma: A case-control study based on Chinese population. Front Nutr 2023; 10:1118997. [PMID: 36937365 PMCID: PMC10018027 DOI: 10.3389/fnut.2023.1118997] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background As one of the essential nutrients for the human body, minerals participate in various physiological activities of the body and are closely related to many cancers. However, the population study on glioma is not sufficient. Objective The purpose of this study was to evaluate the relationship between five dietary minerals and glioma. Methods A total of 506 adult patients with glioma and 506 healthy controls were matched 1:1 according to age (±5 years) and sex. The food intake of the subjects in the past year was collected through the food frequency questionnaire, and the intakes of calcium, magnesium, iron, zinc, and copper in the diet were calculated. The logistic regression model was used to estimate the odds ratio (OR) and 95% confidence interval (95% CI) for dietary minerals to gliomas. Results After adjusting for confounders, higher intakes of calcium (OR = 0.65, 95% CI: 0.57-0.74), magnesium (OR = 0.18, 95% CI: 0.11-0.29), iron (OR = 0.04, 95% CI: 0.02-0.11), zinc (OR = 0.62, 95% CI: 0.54-0.73), and copper (OR = 0.22, 95% CI: 0.13-0.39) were associated with a significantly decreased risk of glioma. Similar results were observed in gliomas of different pathological types and pathological grades. The restriction cubic spline function suggested significant linear dose-response relationships between intakes of five minerals and the risk of glioma. When the dietary minerals exceeded a particular intake, the risk of glioma stabilized. Conclusion Our study suggests that higher dietary intakes of calcium, magnesium, iron, zinc, and copper are associated with a decreased risk of glioma. However, the results of this study require further exploration of potential mechanisms in the future better to elucidate the effects of mineral intake on gliomas.
Collapse
|
4
|
Sp N, Kang DY, Jo ES, Lee JM, Jang KJ. Iron Metabolism as a Potential Mechanism for Inducing TRAIL-Mediated Extrinsic Apoptosis Using Methylsulfonylmethane in Embryonic Cancer Stem Cells. Cells 2021; 10:cells10112847. [PMID: 34831070 PMCID: PMC8616102 DOI: 10.3390/cells10112847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/11/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
Embryonic cancer stem cells (CSCs) can differentiate into any cancer type. Targeting CSC using natural compounds is a good approach as it suppresses cancer recurrence with fewer adverse effects, and methylsulfonylmethane (MSM) is a sulfur-containing compound with well-known anticancer activities. This study determined the mechanistic aspects of the anticancer activity of MSM. We used Western blotting and real-time qPCR for molecular signaling studies and conducted flow cytometry for analyzing the processes in cells. Our results suggested an inhibition in the expression of CSC markers and Wnt/β-catenin signaling. MSM induced TRAIL-mediated extrinsic apoptosis in NCCIT and NTERA-2 cells rather than an intrinsic pathway. Inhibition of iron metabolism-dependent reactive oxygen species (ROS) generation takes part in TRAIL-mediated apoptosis induction by MSM. Suppressing iron metabolism by MSM also regulated p38/p53/ERK signaling and microRNA expressions, such as upregulating miR-130a and downregulating miR-221 and miR-222, which resulted in TRAIL induction and thereby extrinsic pathway of apoptosis. Hence, MSM could be a good candidate for neoadjuvant therapy by targeting CSCs by inhibiting iron metabolism.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.)
| | - Dong Young Kang
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.)
| | - Eun Seong Jo
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Jin-Moo Lee
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea; (E.S.J.); (J.-M.L.)
- SK Bioscience, Seongnam-si 13493, Korea
| | - Kyoung-Jin Jang
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.)
- Correspondence: ; Tel.: +82-2-2030-7839
| |
Collapse
|
5
|
Lenis-Rojas OA, Cordeiro S, Horta-Meireles M, Fernández JAA, Fernández Vila S, Rubiolo JA, Cabezas-Sainz P, Sanchez L, Fernandes AR, Royo B. N-Heterocyclic Carbene Iron Complexes as Anticancer Agents: In Vitro and In Vivo Biological Studies. Molecules 2021; 26:molecules26185535. [PMID: 34577006 PMCID: PMC8470334 DOI: 10.3390/molecules26185535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/04/2022] Open
Abstract
Cisplatin and its derivatives are commonly used in chemotherapeutic treatments of cancer, even though they suffer from many toxic side effects. The problems that emerge from the use of these metal compounds led to the search for new complexes capable to overcome the toxic side effects. Here, we report the evaluation of the antiproliferative activity of Fe(II) cyclopentadienyl complexes bearing n-heterocyclic carbene ligands in tumour cells and their in vivo toxicological profile. The in vitro antiproliferative assays demonstrated that complex Fe1 displays the highest cytotoxic activity both in human colorectal carcinoma cells (HCT116) and ovarian carcinoma cells (A2780) with IC50 values in the low micromolar range. The antiproliferative effect of Fe1 was even higher than cisplatin. Interestingly, Fe1 showed low in vivo toxicity, and in vivo analyses of Fe1 and Fe2 compounds using colorectal HCT116 zebrafish xenograft showed that both reduce the proliferation of human HCT116 colorectal cancer cells in vivo.
Collapse
Affiliation(s)
- Oscar A. Lenis-Rojas
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal;
- Correspondence: (O.A.L.-R.); (A.R.F.); (B.R.)
| | - Sandra Cordeiro
- UCIBIO, Departamento Ciências da Vida, NOVA School of Science and Technology, NOVA University, Campus de Caparica, 2829-516 Caparica, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University, 2819-516 Caparica, Portugal
| | - Marta Horta-Meireles
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal;
| | - Jhonathan Angel Araujo Fernández
- Departamento de Zoología Genética y Antropología Física, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (J.A.A.F.); (S.F.V.); (J.A.R.); (P.C.-S.); (L.S.)
- Laboratory of Zebrafish, Department of Medical Genetics and Genomic Medicine—School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-970, SP, Brazil
| | - Sabela Fernández Vila
- Departamento de Zoología Genética y Antropología Física, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (J.A.A.F.); (S.F.V.); (J.A.R.); (P.C.-S.); (L.S.)
| | - Juan Andrés Rubiolo
- Departamento de Zoología Genética y Antropología Física, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (J.A.A.F.); (S.F.V.); (J.A.R.); (P.C.-S.); (L.S.)
- Facultad de Ciencias Bioquímicas y Farmacéuticas-Centro Científico y Tecnológico Acuario del Río Paraná, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Pablo Cabezas-Sainz
- Departamento de Zoología Genética y Antropología Física, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (J.A.A.F.); (S.F.V.); (J.A.R.); (P.C.-S.); (L.S.)
| | - Laura Sanchez
- Departamento de Zoología Genética y Antropología Física, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (J.A.A.F.); (S.F.V.); (J.A.R.); (P.C.-S.); (L.S.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 5706 Santiago de Compostela, Spain
| | - Alexandra R. Fernandes
- UCIBIO, Departamento Ciências da Vida, NOVA School of Science and Technology, NOVA University, Campus de Caparica, 2829-516 Caparica, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University, 2819-516 Caparica, Portugal
- Correspondence: (O.A.L.-R.); (A.R.F.); (B.R.)
| | - Beatriz Royo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal;
- Correspondence: (O.A.L.-R.); (A.R.F.); (B.R.)
| |
Collapse
|
6
|
Bouché M, Hognon C, Grandemange S, Monari A, Gros PC. Recent advances in iron-complexes as drug candidates for cancer therapy: reactivity, mechanism of action and metabolites. Dalton Trans 2020; 49:11451-11466. [PMID: 32776052 DOI: 10.1039/d0dt02135k] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this perspective, we discuss iron-complexes as drug candidates that are promising alternatives to conventional platinum-based chemotherapies owing to their broad range of reactivities and to the targeting of different biological systems. Breakthroughs in the comprehension of iron complexes' structure-activity relationship contributed to the clarification of their metabolization pathways, sub-cellular localization and influence on iron homeostasis, while enlightening the primary molecular targets of theses likely multi-target metallodrugs. Both the antiproliferative activity and elevated safety index observed among the family of iron complexes showed encouraging results as per their therapeutic potential and selectivity also with the aim of reducing chemotherapy side-effects, and facilitated more pre-clinical investigations. The purpose of this perspective is to summarize the recent advances that contributed in unveiling the intricate relationships between the structural modifications on iron-complexes and their reactivity, cellular trafficking and global mechanisms of action to broaden their use as anticancer drugs and advance to clinical evaluation.
Collapse
Affiliation(s)
- Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| | - Cécilia Hognon
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Philippe C Gros
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| |
Collapse
|
7
|
Basu U, Roy M, Chakravarty AR. Recent advances in the chemistry of iron-based chemotherapeutic agents. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213339] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Zhu H, Dai C, He L, Xu A, Chen T. Iron (II) Polypyridyl Complexes as Antiglioblastoma Agents to Overcome the Blood-Brain Barrier and Inhibit Cell Proliferation by Regulating p53 and 4E-BP1 Pathways. Front Pharmacol 2019; 10:946. [PMID: 31551768 PMCID: PMC6733960 DOI: 10.3389/fphar.2019.00946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022] Open
Abstract
Background and Purpose: It is urgently required to develop promising candidates to permeate across blood-brain barrier (BBB) efficiently with simultaneous disrupting vasculogenic mimicry capability of gliomas. Previously, a series of iron (II) complexes were synthesized through a modified method. Hence, the aim of this study was to evaluate anticancer activity of Fe(PIP)3SO4 against glioma cancer cells. Methods: Cytotoxic effects were determined via MTT assay, and IC50 values were utilized to evaluate the cytotoxicity. Cellular uptake of Fe(PIP)3SO4 between U87 and HEB cells was conducted by subtracting content of the complex remaining in the cell culture supernatants. Propidium Iodide (PI)-flow cytometric analysis was used to analyze cell cycle proportion of U87 cells treated with Fe(PIP)3SO4. The reactive oxygen species levels induced by Fe(PIP)3SO4 were measured by 2'-deoxycoformycin (DCF) probe; ABTS assay was utilized to examine the radical scavenge capacity of Fe(PIP)3SO4. To study the bind efficiency to thioredoxin reductase (TrxR), Fe(PIP)3SO4 was introduced into solution containing TrxR. To verify if Fe(PIP)3SO4 could penetrate BBB, HBMEC/U87 coculture as BBB model was established, and penetrating capability of Fe(PIP)3SO4 was tested. In vitro U87 tumor spheroids were formed to test the permeating ability of Fe(PIP)3SO4. Acute toxicity and biodistribution of Fe(PIP)3SO4 were tested on mice for 72 h. Protein profiles associated with U87 cells treated with Fe(PIP)3SO4 were determined by Western blotting analysis. Results: Results showed that Fe(PIP)3SO4 could suppress cell proliferation by inducing G2/M phase cycle retardation and apoptotic pathways, which was related with expression of p53 and initiation factor 4E binding protein 1. In addition, Fe complex could suppress cell proliferation by downregulating reactive oxygen species levels via scavenging free radicals and interaction with TrxR. Furthermore, Fe(PIP)3SO4 could permeate across BBB and simultaneously inhibited the vasculogenic mimicry-channel of U87 cells, suggesting favorable antiglioblastoma efficacy. Acute toxicity manifested lower degree of the complex compared with cisplatin and temozolomide. Conclusion: Fe(PIP)3SO4 exhibited favorable anticancer activity against glioma cells associated with p53 and 4E binding protein 1, accompanied with negligible toxic effects on normal tissues. Herein, Fe(PIP)3SO4 could be developed as a promising metal-based chemotherapeutic agent to overcome BBB and antagonize glioblastomas.
Collapse
Affiliation(s)
- Huili Zhu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chengli Dai
- The First Affiliated Hospital and the Department of Chemistry, Jinan University, Guangzhou, China
| | - Lizhen He
- The First Affiliated Hospital and the Department of Chemistry, Jinan University, Guangzhou, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Tianfeng Chen
- The First Affiliated Hospital and the Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Silva AG, Lopes CFB, Carvalho Júnior CG, Thomé RG, dos Santos HB, Reis R, Ribeiro RIMDA. WIN55,212-2 induces caspase-independent apoptosis on human glioblastoma cells by regulating HSP70, p53 and Cathepsin D. Toxicol In Vitro 2019; 57:233-243. [DOI: 10.1016/j.tiv.2019.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/02/2019] [Accepted: 02/08/2019] [Indexed: 11/28/2022]
|
10
|
Ye J, Ma J, Liu C, Huang J, Wang L, Zhong X. A novel iron(II) phenanthroline complex exhibits anticancer activity against TFR1-overexpressing esophageal squamous cell carcinoma cells through ROS accumulation and DNA damage. Biochem Pharmacol 2019; 166:93-107. [PMID: 31078603 DOI: 10.1016/j.bcp.2019.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common and aggressive cancers worldwide, especially in China, with poor prognosis due to the lack of effective therapeutic strategies. Here, the anticancer effect and pharmacological mechanism of a newly synthesized Fe(II) phenanthroline complex was studied in ESCC. Our data showed that transferrin receptor 1 (TFR1) was specifically overexpressed in ESCC tissues compared to its expression in normal esophageal tissues, a finding further supported by public datasets. The newly synthesized Fe(II) complex was selectively transported into ESCC cells overexpressing TFR1 through TFR1-mediated endocytosis and exhibited anticancer activity in a dose-dependent manner. The mechanistic study elucidated that the Fe(II) complex caused cell cycle arrest at the G0/G1 phase by blocking the CDK4/6-cyclin D1 complex and induced mitochondria-mediated apoptosis. Furthermore, exposure to the Fe(II) complex led to excessive reactive oxygen species (ROS) accumulation by thioredoxin reductase (TrxR) inhibition and DNA double-strand breaks (DSBs), which in turn sequentially activated ATM, CHK1/2 and p53. Moreover, combination treatment with cisplatin and the Fe(II) complex exhibited a synergistic effect in ESCC cells. Taken together, our results initially suggest the potential application of the Fe(II) complex in ESCC chemotherapy, especially for patients with TFR1 overexpression.
Collapse
Affiliation(s)
- Jiecheng Ye
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Jiwei Ma
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Chan Liu
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Jianxian Huang
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Lihui Wang
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China.
| | - Xueyun Zhong
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Wang Y, Yu L, Ding J, Chen Y. Iron Metabolism in Cancer. Int J Mol Sci 2018; 20:ijms20010095. [PMID: 30591630 PMCID: PMC6337236 DOI: 10.3390/ijms20010095] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022] Open
Abstract
Demanded as an essential trace element that supports cell growth and basic functions, iron can be harmful and cancerogenic though. By exchanging between its different oxidized forms, iron overload induces free radical formation, lipid peroxidation, DNA, and protein damages, leading to carcinogenesis or ferroptosis. Iron also plays profound roles in modulating tumor microenvironment and metastasis, maintaining genomic stability and controlling epigenetics. in order to meet the high requirement of iron, neoplastic cells have remodeled iron metabolism pathways, including acquisition, storage, and efflux, which makes manipulating iron homeostasis a considerable approach for cancer therapy. Several iron chelators and iron oxide nanoparticles (IONPs) has recently been developed for cancer intervention and presented considerable effects. This review summarizes some latest findings about iron metabolism function and regulation mechanism in cancer and the application of iron chelators and IONPs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yafang Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Lei Yu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|