1
|
Yao M, Dong S, Xu X. Asymmetric Carbene Transformations for the Construction of All-Carbon Quaternary Centers. Chemistry 2024; 30:e202304299. [PMID: 38366703 DOI: 10.1002/chem.202304299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Asymmetric catalytic carbene reactions have been well documented in the last few decades for the expeditious assembly of chiral molecules with structural diversity. However, the enantioselective construction of all-carbon quaternary centers remains a challenge in this area. In this review article, two types of asymmetric carbene reactions that beyond cyclopropanation, cyclopropenation, and Büchner reaction, have been summarized for the construction of all-carbon quaternary centers: 1) using carbene species as a 1C synthon that reacts with a trisubstituted prochiral center; 2) sequential installation of two different C-C bonds on the carbene position, which features a gem-difunctionalization reaction. Especially, the asymmetric metal carbene gem-dialkylation process, which has emerged as a practical and versatile method for the expeditious assembly of complex architectures from readily available chemical resources, is a complementary approach for the expeditious assembly of all-carbon quaternary centers.
Collapse
Affiliation(s)
- Minghan Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shanliang Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Zhou X, Jiang J, Zhang M, Wu Q, Zhu K, Shi D, Hou S, Zhao J, Li P. Dioxane promoted photochemical O-alkylation of 1,3-dicarbonyl compounds beyond carbene insertion into C-H and C-C bonds. Chem Commun (Camb) 2024; 60:4330-4333. [PMID: 38545739 DOI: 10.1039/d4cc00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
A photochemical synthesis of enol ethers and furan-3(2H)-ones from 1,3-dicarbonyl compounds and aryl diazoacetates has been developed. Significantly, 1,4-dioxane promoted O-alkylation of various 1,3-dicarbonyl compounds beyond previous carbene insertion into C-H and C-C bonds has been disclosed.
Collapse
Affiliation(s)
- Xinlong Zhou
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| | - Jingjing Jiang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| | - Min Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| | - Qingqing Wu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| | - Keyong Zhu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| | - Dongjie Shi
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| | - Sensen Hou
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| | - Jingjing Zhao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| | - Pan Li
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| |
Collapse
|
3
|
Zhang H, Wang Z, Wang Z, Chu Y, Wang S, Hui XP. Visible-Light-Mediated Formal Carbene Insertion Reaction: Enantioselective Synthesis of 1,4-Dicarbonyl Compounds Containing All-Carbon Quaternary Stereocenter. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zheyuan Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zirui Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yunpeng Chu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Shuncheng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xin-Ping Hui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
4
|
Huang MY, Zhu SF. Uncommon carbene insertion reactions. Chem Sci 2021; 12:15790-15801. [PMID: 35024104 PMCID: PMC8672736 DOI: 10.1039/d1sc03328j] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023] Open
Abstract
Transition-metal-catalysed carbene insertion reaction is a straightforward and efficient protocol for the construction of carbon–carbon or carbon–heteroatom bonds. Compared to the intensively studied and well-established “common” carbene insertion reactions, including carbene insertion into C–H, Si–H, N–H, O–H, and S–H bonds, several “uncommon” carbene insertion reactions, including carbene insertion into B–H, Sn–H, Ge–H, P–H, F–H, C–C, and M–M bonds, have been neglected for a long time. However, more and more studies on uncommon carbene insertion reactions have been disclosed recently, and clearly demonstrate the great synthetic potential of these reactions. The current perspective reviews the history and the newest advances of uncommon carbene insertion reactions, discusses their potential applications and challenges, and also presents an outlook of this promising field. Transition-metal-catalysed carbene insertion reaction is a straightforward and efficient protocol for the construction of carbon–carbon or carbon–heteroatom bonds.![]()
Collapse
Affiliation(s)
- Ming-Yao Huang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
5
|
Gallo RDC, Duarte M, da Silva AF, Okada CY, Deflon VM, Jurberg ID. A Selective C-C Bond Cleavage Strategy Promoted by Visible Light. Org Lett 2021; 23:8916-8920. [PMID: 34730986 DOI: 10.1021/acs.orglett.1c03406] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new visible-light-promoted reaction between aryldiazoacetates and 1,3-diketones allows good yields and selectivities for C-C bond insertions, leading to the corresponding 1,4-dicarbonyl compounds. This transformation is straightforward and highly practical. It tolerates air and moisture and does not require the use of any metals. Mechanistic investigations support the involvement of a key cyclopropanol intermediate derived from an intramolecular rearrangement.
Collapse
Affiliation(s)
- Rafael D C Gallo
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862 Campinas, São Paulo, Brazil
| | - Marcelo Duarte
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862 Campinas, São Paulo, Brazil
| | - Amanda F da Silva
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862 Campinas, São Paulo, Brazil
| | - Celso Y Okada
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862 Campinas, São Paulo, Brazil
| | - Victor M Deflon
- University of São Paulo, Institute of Chemistry of São Carlos, Av. Trabalhador São-Carlense 400, 13566-590 São Carlos, São Paulo, Brazil
| | - Igor D Jurberg
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862 Campinas, São Paulo, Brazil
| |
Collapse
|
6
|
Cao T, Gao C, Kirillov AM, Fang R, Yang L. DFT quest for mechanism and stereoselectivity in B(C6F5)3-catalyzed cyclopropanation of alkenes with aryldiazoacetates. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Talbi S, Dib M, Bouissane L, Hafid A, Rabi S, Khouili M. Recent Progress in the Synthesis of Heterocycles Based on 1,3-Diketones. Curr Org Synth 2021; 19:220-245. [PMID: 34635043 DOI: 10.2174/1570179418666211011141428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
N,O-heterocycles containing the dicarbonyl ring play a significant role in heterocyclic and therapeutic chemistry. Since the discovery of 1,3-diketones, numerous research works have been achieved regarding the synthesis and its chemical reactivity. In this review, we have described the most relevant publications involving β-diketone compounds published during the period between 2018 to date. In addition, we include the 1,3-diketones-based heterocyclic compounds prepared by various synthetic methodologies.
Collapse
Affiliation(s)
- Soumaya Talbi
- Laboratoire de Chimie Organique et Analytique, Équipe de Chimie Organique et Organométallique Appliquées, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000 Beni-Mellal. Morocco
| | - Mustapha Dib
- Laboratoire de Chimie Organique et Analytique, Équipe de Chimie Organique et Organométallique Appliquées, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000 Beni-Mellal. Morocco
| | - Latifa Bouissane
- Laboratoire de Chimie Organique et Analytique, Équipe de Chimie Organique et Organométallique Appliquées, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000 Beni-Mellal. Morocco
| | - Abderrafia Hafid
- Laboratoire de Chimie Organique et Analytique, Équipe de Chimie Organique et Organométallique Appliquées, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000 Beni-Mellal. Morocco
| | - Souad Rabi
- Laboratoire de Chimie Organique et Analytique, Équipe de Chimie Organique et Organométallique Appliquées, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000 Beni-Mellal. Morocco
| | - Mostafa Khouili
- Laboratoire de Chimie Organique et Analytique, Équipe de Chimie Organique et Organométallique Appliquées, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000 Beni-Mellal. Morocco
| |
Collapse
|
8
|
Geng Y, Hua Y, Jia S, Wang M. Direct Asymmetric α‐Selective Mannich Reaction of β,γ‐Unsaturated Ketones with Cyclic α‐Imino Ester: Divergent Synthesis of Cyclocanaline and Tetrahydro Pyridazinone Derivatives. Chemistry 2021; 27:5130-5135. [DOI: 10.1002/chem.202100284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Yu‐Huan Geng
- College of Chemistry and Institute of Green Catalysis Zhengzhou University No. 100, Science Road Zhengzhou City Henan province 450000 P. R. China
| | - Yuan‐Zhao Hua
- College of Chemistry and Institute of Green Catalysis Zhengzhou University No. 100, Science Road Zhengzhou City Henan province 450000 P. R. China
| | - Shi‐Kun Jia
- College of Chemistry and Institute of Green Catalysis Zhengzhou University No. 100, Science Road Zhengzhou City Henan province 450000 P. R. China
| | - Min‐Can Wang
- College of Chemistry and Institute of Green Catalysis Zhengzhou University No. 100, Science Road Zhengzhou City Henan province 450000 P. R. China
| |
Collapse
|
9
|
Shi M, Wang Z. Valence, Size, and Shape Control of Gold Nanoparticles Synthesized by Electron-Assisted Reduction. Chem Asian J 2020; 15:3904-3912. [PMID: 33021084 DOI: 10.1002/asia.202001071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/05/2020] [Indexed: 01/18/2023]
Abstract
An electron-assisted strategy was developed to prepare gold nanoparticles (AuNPs) at room temperature. Glow discharge plasma as electron source was successfully used to control the valence state, size, and shape of AuNPs. Stable Au(I) was obtained in 3 min by plasma, and Au(I) was reduced to zero valence with the increase in treatment time. An increase in the amount of Au did not induce an increase in particle size. A narrow size distribution was also achieved. The narrowest size distribution was observed at 9 min at 600 V. AuNPs grew slowly under glow discharge plasma, which slightly changed the mean size of AuNPs. Moreover, the average size of AuNPs was smaller under alkaline conditions. The initial pH of the solution can affect the nucleation and growth of AuNPs and further affect their particle size. Spherical AuNPs, hexagonal AuNPs, rectangular AuNPs, flower-shaped AuNPs, and Au nanorods were easily obtained within 30 min by adding different additives. The hexagonal AuNPs exhibited the largest current response toward caffeine and showed a good linear range (0.1-1000 μM) with a low detection limit (0.064 μM), because their high-energy planes can increase the electron transfer rate and improve electrocatalytic activity.
Collapse
Affiliation(s)
- Mengge Shi
- School of Chemical Engineering and Technology, Tianjin University, National Engineering Research Centre of Industry Crystallization Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhao Wang
- School of Chemical Engineering and Technology, Tianjin University, National Engineering Research Centre of Industry Crystallization Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
10
|
Ren Y, Mao H, Hu M, Zhu S, Zhou Q. Cu/PCy
3
‐Catalyzed Formal Carbene Insertion into Electron‐Deficient C−H Bonds. ChemCatChem 2020. [DOI: 10.1002/cctc.202000684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yuan‐Yuan Ren
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Hong‐Xiang Mao
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Meng‐Yang Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Shou‐Fei Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Qi‐Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
11
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Yin X, Zuccarello G, García‐Morales C, Echavarren AM. Gold(I)‐Catalyzed Intramolecular C(sp
3
)−H Insertion by Decarbenation of Cycloheptatrienes. Chemistry 2019; 25:9485-9490. [DOI: 10.1002/chem.201900919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/11/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xiang Yin
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Giuseppe Zuccarello
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Cristina García‐Morales
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira I Virgili C/ Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| |
Collapse
|