1
|
Asano K, Matsubara S. Organocatalytic Access to Tetrasubstituted Chiral Carbons Integrating Functional Groups. CHEM REC 2022:e202200200. [PMID: 36163471 DOI: 10.1002/tcr.202200200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Three-dimensional organic structures containing sp3 carbons bearing four non-hydrogen substituents can provide drug-like molecules. Although such complex structures are challenging targets in synthetic organic chemistry, efficient synthetic approaches will open a new chemical space for pharmaceutical candidates. This review provides an account of our recent achievements in developing organocatalytic approaches to attractive molecular platforms based on optically active sp3 carbons integrating four different functional groups. These methodologies include asymmetric cycloetherification and cyanation of multifunctional ketones, both of which take advantage of the mild characteristics of organocatalytic activation. Enzyme-like but non-enzymatic organocatalytic systems can be used to precisely manufacture molecules containing complex chiral structures without substrate specificity problems. In addition, these catalytic systems control not only stereoselectivity but also site-selectivity and do not induce side reactions even from substrates with rich functionality.
Collapse
Affiliation(s)
- Keisuke Asano
- Institute for Catalysis, Hokkaido University Sapporo, Hokkaido, 001-0021, Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Kyotodaigaku-Katsura, Nishikyo, Kyoto, 615-8510, Japan
| |
Collapse
|
2
|
Nagano T, Matsumoto A, Yoshizaki R, Asano K, Matsubara S. Non-enzymatic catalytic asymmetric cyanation of acylsilanes. Commun Chem 2022; 5:45. [PMID: 36697739 PMCID: PMC9814240 DOI: 10.1038/s42004-022-00662-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/09/2022] [Indexed: 01/28/2023] Open
Abstract
The asymmetric cyanation of acylsilanes affords densely functionalized tetrasubstituted chiral carbon centers bearing silyl, cyano, and hydroxy groups, which are of particular interest in synthetic and medicinal chemistry. However, this method has been limited to a few enzymatic approaches, which employ only one substrate because of substrate specificity. Here we show the non-enzymatic catalytic asymmetric cyanation of acylsilanes using a chiral Lewis base as an enantioselective catalyst, trimethylsilyl cyanide as a cyanating reagent, and isopropyl alcohol as an additive to drive catalyst turnover. High enantio- and site-selectivities are achieved in a catalytic manner, and a variety of functional groups are installed in optically active acylsilane cyanohydrins, thus overcoming the limitations imposed by substrate specificity in conventional enzymatic methods. A handle for the synthetic application of the products is also established through the development of a catalyst for protecting acylsilane cyanohydrins, which are unstable and difficult to protect alcohols.
Collapse
Affiliation(s)
- Tagui Nagano
- grid.258799.80000 0004 0372 2033Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto, 615-8510 Japan
| | - Akira Matsumoto
- grid.258799.80000 0004 0372 2033Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto, 615-8510 Japan ,grid.258799.80000 0004 0372 2033Present Address: Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-Shimoadachi, Sakyo, Kyoto, 606-8501 Japan
| | - Ryotaro Yoshizaki
- grid.258799.80000 0004 0372 2033Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto, 615-8510 Japan
| | - Keisuke Asano
- grid.258799.80000 0004 0372 2033Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto, 615-8510 Japan
| | - Seijiro Matsubara
- grid.258799.80000 0004 0372 2033Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto, 615-8510 Japan
| |
Collapse
|
3
|
Atkin L, Priebbenow DL. Cobalt-catalysed acyl silane directed ortho C–H functionalisation of benzoyl silanes. Chem Commun (Camb) 2022; 58:12604-12607. [DOI: 10.1039/d2cc05350k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acyl silanes can be engaged as weakly coordinating directing groups in cobalt catalysed C–H functionalisation reactions to prepare benzoyl silanes that are highly amenable to subsequent synthetic manipulations yet inaccessible via existing methods.
Collapse
Affiliation(s)
- Liselle Atkin
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Daniel L. Priebbenow
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
- School of Chemistry, University of Melbourne, Parkville, 3010, Victoria, Australia
| |
Collapse
|
4
|
Ohmatsu K, Morita Y, Kiyokawa M, Hoshino K, Ooi T. Catalytic Asymmetric Strecker Reaction of Ketoimines with Potassium Cyanide. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kohsuke Ohmatsu
- Institute of Transformative Bio-Molecules (WPI-ITbM) Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Nagoya 464-8601 Japan
| | - Yusuke Morita
- Institute of Transformative Bio-Molecules (WPI-ITbM) Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Nagoya 464-8601 Japan
| | - Mari Kiyokawa
- Institute of Transformative Bio-Molecules (WPI-ITbM) Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Nagoya 464-8601 Japan
| | - Kimihiro Hoshino
- Institute of Transformative Bio-Molecules (WPI-ITbM) Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Nagoya 464-8601 Japan
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM) Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Nagoya 464-8601 Japan
| |
Collapse
|
5
|
Murata R, Asano K, Matsubara S. Catalytic asymmetric cycloetherification via intramolecular oxy-Michael addition of enols. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Asano K. Multipoint Recognition of Molecular Conformations with Organocatalysts for Asymmetric Synthetic Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Keisuke Asano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
7
|
Murata R, Matsumoto A, Asano K, Matsubara S. Desymmetrization of gem-diols via water-assisted organocatalytic enantio- and diastereoselective cycloetherification. Chem Commun (Camb) 2020; 56:12335-12338. [PMID: 32896841 DOI: 10.1039/d0cc05509c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The first desymmetrization of gem-diols forming chiral hemiketal carbons was accomplished via organocatalytic enantio- and diastereoselective cycloetherification, which afforded optically active tetrahydropyrans containing a chiral hemiketal carbon and tetrasubstituted stereocenters bearing synthetically versatile fluorinated groups. The desymmetrization of silanediols was also demonstrated as an asymmetric route to chiral silicon centers.
Collapse
Affiliation(s)
- Ryuichi Murata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan.
| | | | | | | |
Collapse
|
8
|
Wada Y, Murata R, Fujii Y, Asano K, Matsubara S. Enantio- and Diastereoselective Construction of Contiguous Tetrasubstituted Chiral Carbons in Organocatalytic Oxadecalin Synthesis. Org Lett 2020; 22:4710-4715. [DOI: 10.1021/acs.orglett.0c01501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuuki Wada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Ryuichi Murata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Yuki Fujii
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Keisuke Asano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
9
|
Pan H, Han MY, Li P, Wang L. “On Water” Direct Catalytic Vinylogous Aldol Reaction of Silyl Glyoxylates. J Org Chem 2019; 84:14281-14290. [DOI: 10.1021/acs.joc.9b01945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hong Pan
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Man-Yi Han
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Lei Wang
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| |
Collapse
|
10
|
Matsumoto A, Asano K, Matsubara S. Asymmetric
syn
‐1,3‐Dioxane Construction via Kinetic Resolution of Secondary Alcohols Using Chiral Phosphoric Acid Catalysts. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Akira Matsumoto
- Department of Material Chemistry Graduate School of EngineeringKyoto University Kyotodaigaku-katsura, Nishikyo Kyoto 615-8510 Japan
| | - Keisuke Asano
- Department of Material Chemistry Graduate School of EngineeringKyoto University Kyotodaigaku-katsura, Nishikyo Kyoto 615-8510 Japan
| | - Seijiro Matsubara
- Department of Material Chemistry Graduate School of EngineeringKyoto University Kyotodaigaku-katsura, Nishikyo Kyoto 615-8510 Japan
| |
Collapse
|
11
|
Kurimoto Y, Nasu T, Fujii Y, Asano K, Matsubara S. Asymmetric Cycloetherification of in Situ Generated Cyanohydrins through the Concomitant Construction of Three Chiral Carbon Centers. Org Lett 2019; 21:2156-2160. [PMID: 30869909 DOI: 10.1021/acs.orglett.9b00462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The organocatalytic enantio- and diastereoselective cycloetherification of in situ generated cyanohydrins through the concomitant construction of three chiral carbon centers is reported. This protocol facilitates the concise synthesis of optically active tetrahydropyran derivatives, which are ubiquitous scaffolds found in various bioactive compounds, through the simultaneous construction of multiple bonds and stereogenic centers, including tetrasubstituted chiral carbons. The resulting products also contain multiple synthetically important functional groups, which expand their possible usefulness as chiral building blocks.
Collapse
Affiliation(s)
- Yosuke Kurimoto
- Department of Material Chemistry, Graduate School of Engineering , Kyoto University , Kyotodaigaku-Katsura, Nishikyo , Kyoto 615-8510 , Japan
| | - Teruhisa Nasu
- Department of Material Chemistry, Graduate School of Engineering , Kyoto University , Kyotodaigaku-Katsura, Nishikyo , Kyoto 615-8510 , Japan
| | - Yuki Fujii
- Department of Material Chemistry, Graduate School of Engineering , Kyoto University , Kyotodaigaku-Katsura, Nishikyo , Kyoto 615-8510 , Japan
| | - Keisuke Asano
- Department of Material Chemistry, Graduate School of Engineering , Kyoto University , Kyotodaigaku-Katsura, Nishikyo , Kyoto 615-8510 , Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering , Kyoto University , Kyotodaigaku-Katsura, Nishikyo , Kyoto 615-8510 , Japan
| |
Collapse
|