1
|
Klementyeva SV, Gamer MT, Schulze M, Suryadevara N, Bogomyakov AS, Abramov PA, Konchenko SN, Ruben M, Wernsdorfer W, Moreno-Pineda E. Dinuclear Rare-Earth β-Diketiminates with Bridging 3,5-Di tert-butyl-catecholates: Synthesis, Structure, and Single-Molecule Magnet Properties. Inorg Chem 2024. [PMID: 39707994 DOI: 10.1021/acs.inorgchem.4c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
The dinuclear β-diketiminato complex [L1ClDy(μ-Cl)3DyL1(THF)] (1) (L1 = {2,6-iPr2C6H3-NC(Me)CHC(Me)N-2,6-iPr2C6H3}-) was obtained by reaction of DyCl3 with KL1 in a molar ratio of 1:1 and used for the preparation of the mixed-ligand complex [L1Dy(μ-3,5-Cat)]2 (2) by salt metathesis reaction with 3,5-CatK2 (3,5-Cat -3,5-di-tert-butyl-catecholate). Reactions of 3,5-CatNa2 with [L2LnCl2(THF)2] (Ln3+ = Dy, Y) ligated with the less bulky ligand L2 = {2,4,6-Me3C6H2-NC(Me)CHC(Me)N-2,4,6-Me3C6H2}- afforded the mixed-ligand THF-containing complexes [L2Ln(μ-3,5-Cat)(THF)]2 (Ln3+ = Dy (3a), Y (3b)). All new complexes were fully characterized, and the solid-state structures were determined by single-crystal X-ray diffraction. Magnetic measurements revealed single-molecule magnet behavior for the dysprosium complexes. Sub-Kelvin μSQUID studies confirm the SMM character of the systems, while CASSCF calculation along with simulation of the experimental data yields an antiferromagnetic interaction operating between the Dy3+ ions.
Collapse
Affiliation(s)
- Svetlana V Klementyeva
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Campus North, P.O. Box 3640, Karlsruhe 76021, Germany
| | - Michael T Gamer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Campus South, Engesserstr. 15, Karlsruhe 76131, Germany
| | - Michael Schulze
- Physical Institute, Karlsruhe Institut of Technology (KIT) Campus South, Wolfgang-Gaede-Str. 1, Karlsruhe 76131, Germany
| | - Nithin Suryadevara
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Campus North, P.O. Box 3640, Karlsruhe 76021, Germany
| | - Artem S Bogomyakov
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia
| | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Prosp. Lavrentieva 3, Novosibirsk 630090, Russia
| | - Sergey N Konchenko
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Campus South, Engesserstr. 15, Karlsruhe 76131, Germany
- Nikolaev Institute of Inorganic Chemistry SB RAS, Prosp. Lavrentieva 3, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Mario Ruben
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Campus North, P.O. Box 3640, Karlsruhe 76021, Germany
| | - Wolfgang Wernsdorfer
- Physical Institute, Karlsruhe Institut of Technology (KIT) Campus South, Wolfgang-Gaede-Str. 1, Karlsruhe 76131, Germany
| | - Eufemio Moreno-Pineda
- Physical Institute, Karlsruhe Institut of Technology (KIT) Campus South, Wolfgang-Gaede-Str. 1, Karlsruhe 76131, Germany
- Departamento de Química-Física, Escuela de Química, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama 0824, Panama
- Facultad de Ciencias Naturales, Exactas y Tecnología, Grupo de Investigación de Materiales, Universidad de Panamá, Panama 0824, Panama
| |
Collapse
|
2
|
Wang HS, Zhou PF, Wang J, Long QQ, Hu Z, Chen Y, Li J, Song Y, Zhang YQ. Significantly Enhancing the Single-Molecule-Magnet Performance of a Dinuclear Dy(III) Complex by Utilizing an Asymmetric Auxiliary Organic Ligand. Inorg Chem 2021; 60:18739-18752. [PMID: 34865470 DOI: 10.1021/acs.inorgchem.1c02169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this work, we employed an asymmetric auxiliary organic ligand (1,1,1-trifluoroacetylacetone, Htfac) to further regulate the magnetic relaxation behavior of series of Dy2 single-molecule magnets (SMMs) with a N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2L) ligand. Fortunately, an air-stable Dy2 complex, [Dy2(L)2(tfac)2] (1; Htfac = 1,1,1-trifluoroacetylacetone) was obtained at room temperature. A structural analysis indicated that some Dy-O or Dy-N bond lengths for 1 are not in the range of those for the complexes [DyIII2(L)2(acac)2]·2CH2Cl2 (Dy2-acac; Hacac = acetylacetone) and [DyIII2(L)2(hfac)2] (Dy2-hfac; Hhfac = hexafluoroacetylacetone), although the electron-withdrawing ability of tfac- is stronger than that of acac- but weaker than that of hfac-. Additionally, the Dy-O3/O3a (the two O atoms bridged to DyIII ions) bond lengths are also affected by the asymmetrical Htfc ligand. This indicated that the charge distribution of the coordination atoms around DyIII has been modified in 1, which leads to the fine-tuning of the magnetic relaxation behavior of 1. Magnetic studies indicated that the values of effective energy barrier (Ueff) for 1 and its diluted sample (2) are 234.8(3) and 188.0(6) K, respectively, which are both higher than the reported value of 110 K for the complex Dy2-hfac. More interestingly, 1 exhibits a magnetic hysteresis opening when T < 2.5 K at zero field, while the hysteresis loops of 2 are closed at a zero dc field. This discrepancy is due to the weak intramolecular exchange coupling in 2, which cannot overcome the QTM of the single DyIII ion. Ab initio calculations for 1 revealed that the charge distributions of the coordination atoms around DyIII ions were regulated and the intramolecular exchange coupling was indeed improved when the asymmetrical Htfc was employed as a ligand for the synthesis of this kind of Dy2 SMM.
Collapse
Affiliation(s)
- Hui-Sheng Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, People's Republic of China
| | - Peng-Fei Zhou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, People's Republic of China
| | - Jia Wang
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Qiao-Qiao Long
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, People's Republic of China
| | - Zhaobo Hu
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, People's Republic of China
| | - Jing Li
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - You Song
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, People's Republic of China
| |
Collapse
|
3
|
Li D, Li Y, Tello Yepes DF, Zhang X, Li Y, Yao JL. Hexanuclear Co 4 Dy 2 , Zn 4 Dy 2 , and Co 4 Y 2 Complexes with Defect Tetracubane Cores: Syntheses, Structures, and Magnetic Properties. Chem Asian J 2021; 16:2545-2551. [PMID: 34297468 DOI: 10.1002/asia.202100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/11/2021] [Indexed: 11/09/2022]
Abstract
A hexanuclear heterometallic cluster of composition [Dy2 Co4 (L)4 (NO3 )2 (OH)4 (C2 H5 OH)2 ] ⋅ 2 C2 H5 OH (1) was synthesized by employing a Schiff base 2-(((2-hydroxy-3-methoxybenzyl) imino)methyl)-4-methoxyphenol (H2 L) as ligand and utilizing Dy(NO3 )3 ⋅ 6H2 O and Co(NO3 )2 ⋅ 6H2 O as metal ion sources. X-ray single-crystal diffraction analysis indicated that complex 1 contains a defect tetracubane core and possesses central symmetric structure, with two DyIII ions being in the central body position of the molecule and four CoII ions being arranged at the outer sites. Magnetic studies reveal that complex 1 behaves as single-molecule magnet (SMM) with energy barrier of 27.50 K. To investigate the individual contribution of DyIII and CoII ions to the SMM behavior, another two complexes of formulae [Dy2 Zn4 (L)4 (NO3 )2 (OH)4 ] ⋅ 4CH3 OH (2) and [Y2 Co4 (L)4 (NO3 )2 (OH)4 (C2 H5 OH)2 ] ⋅ 2 C2 H5 OH (3) were prepared. Complexes 1 and 3 are isomorphous. The coordination geometries of DyIII ions in 1 and 2 are different. The DyIII ions are eight-coordinated in 2 and nine-coordinated in 1. Complex 2 exhibits SMM behavior with energy barrier of 69.67 K, but complex 3 does not display SMM property. These results reveal that the SMM behaviors of 1 and 2 are mainly originated from DyIII ions. It might be the higher symmetry of DyIII ions in 2 that results in the higher energy barrier.
Collapse
Affiliation(s)
- Dawei Li
- College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Yafei Li
- College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | | | - Xiamei Zhang
- College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Yahong Li
- College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Jin-Lei Yao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
4
|
Wang Y, Yuan Z, Guo Y, Ma X, Meng Z, Sha J, Zhang H. Single‐Molecule Magnetism in Dy
2
Cluster Based on a Schiff Base Ligand. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yingying Wang
- Department of Chemistry and Chemical Engineering Key Laboratory of Inorganic Chemistry in Universities of Shandong Jining University 273155 Qufu P. R. China
| | - Zhuangdong Yuan
- Department of Chemistry and Chemical Engineering Key Laboratory of Inorganic Chemistry in Universities of Shandong Jining University 273155 Qufu P. R. China
| | - Yunjie Guo
- Department of Chemistry and Chemical Engineering Key Laboratory of Inorganic Chemistry in Universities of Shandong Jining University 273155 Qufu P. R. China
| | - Xuxiao Ma
- Department of Chemistry and Chemical Engineering Key Laboratory of Inorganic Chemistry in Universities of Shandong Jining University 273155 Qufu P. R. China
| | - Zitong Meng
- Department of Chemistry and Chemical Engineering Key Laboratory of Inorganic Chemistry in Universities of Shandong Jining University 273155 Qufu P. R. China
| | - Jingquan Sha
- Department of Chemistry and Chemical Engineering Key Laboratory of Inorganic Chemistry in Universities of Shandong Jining University 273155 Qufu P. R. China
| | - Haifeng Zhang
- Department of Chemistry and Chemical Engineering Key Laboratory of Inorganic Chemistry in Universities of Shandong Jining University 273155 Qufu P. R. China
| |
Collapse
|