1
|
Khan FF, Bera SK, Dey S, Lahiri GK. Redox activity as a tool for bond activations and functionalizations. INORGANIC CHEMISTRY IN INDIA 2023. [DOI: 10.1016/bs.adioch.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
2
|
Arya Y, Bera SK, Priego JL, Jiménez-Aparicio R, Lahiri GK. Bidirectional noninnocence of hinge-like deprotonated bis-lawsone on selective ruthenium platform: a function of varying ancillary ligands. Dalton Trans 2022; 51:10441-10456. [PMID: 35762823 DOI: 10.1039/d2dt01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work aimed to obtain discrete heavier metal complexes of unperturbed deprotonated bis-lawsone (hinge-like H2L = 2,2'-bis(3-hydroxy-1,4-napthoquinone). This is primarily due to its limited examples with lighter metal ions (Co, Zn, and Ga) and the fact that our earlier approach with the osmium ion facilitated its functionalisation. Herein, we demonstrated the successful synthesis and structural characterisation of L2--derived diruthenium [(bpy)2RuII(μ-L2-)RuII(bpy)2](ClO4)2 [1](ClO4)2 (S = 0), (acac)2RuIII(μ-L2-)RuIII(acac)22 (S = 1) and monoruthenium (pap)2Ru(L2-) 3 (S = 0) derivatives (bpy = 2,2'-bipyridine, acac = acetylacetonate, and pap = 2-phenylazopyridine). The crystal structures established that (i) O,O-/O,O- donating five-membered bis-bidentate and O-,O- donating seven-membered bidentate chelating modes of deprotonated L2- in rac (ΔΔ/ΛΛ) diastereomeric [1](ClO4)2, 2 and 3, respectively. (ii) The L2- bridging unit in [1](ClO4)2, 2 and 3 underwent twisting its two naphthoquinone rings with respect to the ring connecting C-C bond by 73.01°, 62.15° and 59.12°, respectively. (iii) Intermolecular π-π interactions (∼3.5 Å) between the neighbouring molecules. The paramagnetic complex 2 (S = 1) with two non-interacting Ru(III) (S = 1/2) ions exhibited weak antiferromagnetic coupling only at very low temperatures. In agreement with the magnetic results, 2 displayed typical RuIII-based anisotropic EPR in CH3CN (<g>/Δg: 2.314/0.564) but without any forbidden g1/2 signal at 120 K. The complexes exhibited multiple redox processes in CH3CN in the experimental potential window of ± 2.0 V versus SCE. The analysis of the redox steps via a combined experimental and theoretical (DFT/TD-DFT) approach revealed the involvement of L2- to varying extents in both the oxidative and reductive processes as a consequence of its bidirectional redox non-innocent feature. The mixing of the frontier orbitals of the metal ion and L2- due to their closeness in energy indeed led to the resonating electronic form in certain redox states instead of any precise electronic structural state.
Collapse
Affiliation(s)
- Yogita Arya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Sudip Kumar Bera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - José Luis Priego
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Reyes Jiménez-Aparicio
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
3
|
Lahiri GK, Panda S, Huang KW, Singh A, Dey S. Inner-sphere electron transfer at the ruthenium-azo interface. Dalton Trans 2022; 51:2547-2559. [DOI: 10.1039/d1dt03934b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal complexes exhibiting multiple reversible redox states have drawn continuing research interest due to their electron reservoir features. In this context, the present article described ruthenium-acac complexes (acac=acetylacetonate) incorporating redox-active...
Collapse
|
4
|
Bera SK, Lahiri GK. Structural and electronic forms of doubly oxido/Pz and triply oxido/(Pz) 2 bridged mixed valent and isovalent diruthenium complexes (Pz = pyrazolate). Dalton Trans 2021; 50:17653-17664. [PMID: 34806731 DOI: 10.1039/d1dt03076k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The article reported on the diastereomeric dinuclear mixed-valent complexes [(acac)2Ru(III)(μ-O)(μ-PzR)Ru(IV)(acac)2] (R = H, Me, meso: ΔΛ, 1a-1c; rac: ΔΔ/ΛΛ, 2a-2c) and rac-[(acac)2Ru(III)(μ-O)(μ-Iz)Ru(IV)(acac)2], (2d) (HPz = pyrazole, HIz = indazole, acac = acetylacetonate). Moreover, the diruthenium(II,II) complexes [(HPz)3Ru(II)(μ-O)(μ-Pz)2 Ru(II)(HPz)3] (3a) and [(HIz)3Ru(II)(μ-O)(μ-Iz)2Ru(II)(HIz)3] (3d) were presented. The analogous form of 3a, i.e., [(HPz)2(Pz)Ru(III)(μ-O)(μ-Pz)2Ru(III)(Pz)(HPz)2], was previously reported. Single crystal X-ray structures of 1a-1c/2a-2d and representative 3a showed their molecular forms, including the diastereomeric nature of the former. The Ru-O-Ru angle decreased appreciably on switching from doubly bridged 1 and 2 (128-135°) to triply bridged 3a (114°). Both series of complexes displayed rhombic symmetry in their EPR spectra, with g1 and g2 being very similar for 1a-1c with an almost axial look. The mixed-valence complex with a Ru(III)Ru(IV) (S = 1/2) state of 1 and 2 would lead to iso-valence complexes of Ru(III)Ru(III) and Ru(IV)Ru(IV) with an EPR inactive state by one electron redox reaction. On the other hand, metal based {Ru(II)Ru(II)/Ru(II)Ru(III), 3a/3a+} and terminal ligand (HPz/HPz-, 3a/3a-) based redox processes displayed anisotropic and free radical EPR, respectively. An IVCT (intervalence charge transfer) band was found for the delocalised mixed valent 1 and 2 {Ru(III)Ru(IV)} or 3a+ {Ru(II)Ru(III)} in the NIR region. The intense metal-to-ligand charge transfer (MLCT) transitions of 1-3 in the visible region varied systematically as a function of the metal oxidation state.
Collapse
Affiliation(s)
- Sudip Kumar Bera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
5
|
Singh A, Dey S, Panda S, Lahiri GK. Radical versus Nonradical States of Azobis(benzothiazole) as a Function of Ancillary Ligands on Selective Ruthenium Platforms. Inorg Chem 2021; 60:18260-18269. [PMID: 34762800 DOI: 10.1021/acs.inorgchem.1c02883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The paper deals with the electronic impact of ancillary ligands on the varying redox features of azobis(benzothiazole) (abbt) in the newly introduced mononuclear ruthenium complexes [Ru(pap)2(abbt)]n (1n) and [Ru(bpy)2(abbt)]n (2n), where pap = 2-phenylazopyridine and bpy = 2,2'-bipyridine. In this regard, the complexes [RuII(pap)2(abbt•-)]ClO4 ([1]ClO4), [RuII(pap)2(abbt0)](ClO4)2 ([1](ClO4)2), [RuII(bpy)2(abbt0)](ClO4)2 ([2](ClO4)2), and [RuII(bpy)2(abbt•-)]ClO4 ([2]ClO4) were structurally and spectroscopically characterized. Unambiguous assignments of the aforestated radical and nonradical forms of abbt in 1+/2+ and 12+/22+, respectively, were made primarily based on their redox-sensitive azo (N═N) bond distances as well as by their characteristic electron paramagnetic resonance (EPR)/NMR signatures. Although the radical form of abbt•- was isolated as an exclusive product in the case of strongly π-acidic pap-derived 1+, the corresponding moderately π-acidic bpy ancillary ligand primarily delivered an oxidized form of abbt0 in 22+, along with the radical form in 2+ as a minor (<10%) component. The oxidized abbt0-derived [1](ClO4)2 was, however, obtained via the chemical oxidation of [1]ClO4. Both 1+ and 22+ displayed multiple closed by reversible redox processes (one oxidation O1 and four successive reductions R1-R4) within the potential window of ±2.0 V versus saturated calomel electrode. The involvement of metal-, ligand-, or metal/ligand-based frontier molecular orbitals along the redox chain was assigned based on the combined experimental (structure, EPR, and spectroelectrochemisry) and theoretical [density functional theory (DFT): molecular orbitals, Mulliken spin densities/time-dependent DFT] investigations. It revealed primarily ligand (abbt/pap or bpy)-based redox activities, keeping the metal ion as a simple spectator. Moreover, frontier molecular orbital analysis corroborated the initial isolation of the radical and nonradical species for the pap-derived 1+ and bpy-derived 22+ as well as facile reduction of pap and abbt in 1+ and 2+, respectively.
Collapse
Affiliation(s)
- Aditi Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanchaita Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
6
|
Local DNA microviscosity converts ruthenium polypyridyl complexes to ultrasensitive photosensitizers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Panda S, Baliyan R, Dhara S, Huang KW, Lahiri GK. Redox induced oxidative C-C coupling of non-innocent bis(heterocyclo)methanides. Dalton Trans 2021; 50:16647-16659. [PMID: 34755157 DOI: 10.1039/d1dt03310g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Redox driven C-C bond formation has gained recent attention over the traditional sequence of oxidative addition, insertion and reductive elimination reactions. In this regard, the transient radical mediated diverse reactivity profile of bis(heterocyclo)methanes (H-BHM: HL1-HL4) has been demonstrated as a function of varying metal ions and ligand backbones. It highlighted the following events: (a) redox induced homocoupling of deprotonated HL1 and HL4 on coordination to M(OAc)2 precursors (M = CuII, ZnII, PdII, AgI), including the effective role of molecular oxygen in the transformation process; (b) steric inhibition of C-C coupling of HL1 or HL4 on inserting the substituent at the bridged methylene centre (Ph in HL2 or CH3 in HL3); (c) competitive C-C coupling versus oxygenation of free HL1 with varying concentrations of PdII(OAc)2 as the ease of oxygenation over dimerisation of the deprotonated HL1 was corroborated by the DFT calculated lower activation barrier and greater thermodynamic stability of the former; and (d) redox non-innocence of BHMs on a coordinatively inert ruthenium platform, which in turn favored the involvement of a radical pathway for the aforestated coupling or oxygenation process. A combined structural, spectroscopic and DFT calculated transition state analysis demonstrated the mechanistic outline for the metal assisted oxidative coupling of BHMs.
Collapse
Affiliation(s)
- Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai, 400076, India. .,KAUST Catalysis Centre and Division of Chemical and Life Sciences and Engineering, KAUST, Saudi Arabia
| | - Rupal Baliyan
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai, 400076, India.
| | - Suman Dhara
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai, 400076, India.
| | - Kuo-Wei Huang
- KAUST Catalysis Centre and Division of Chemical and Life Sciences and Engineering, KAUST, Saudi Arabia
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai, 400076, India.
| |
Collapse
|
8
|
Singh A, Panda S, Dey S, Lahiri GK. Metal‐to‐Ligand Charge Transfer Induced Valence Tautomeric Forms of Non‐Innocent 2,2′‐Azobis(benzothiazole) in Ruthenium Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aditi Singh
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sanjib Panda
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sanchaita Dey
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Goutam Kumar Lahiri
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
9
|
Singh A, Panda S, Dey S, Lahiri GK. Metal‐to‐Ligand Charge Transfer Induced Valence Tautomeric Forms of Non‐Innocent 2,2′‐Azobis(benzothiazole) in Ruthenium Frameworks. Angew Chem Int Ed Engl 2021; 60:11206-11210. [DOI: 10.1002/anie.202100979] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Aditi Singh
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sanjib Panda
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sanchaita Dey
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Goutam Kumar Lahiri
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
10
|
Kumari M, Bera SK, Blickle S, Kaim W, Lahiri GK. The Indigo Isomer Epindolidione as a Redox‐Active Bridging Ligand for Diruthenium Complexes. Chemistry 2021; 27:5461-5469. [DOI: 10.1002/chem.202004747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/09/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Maya Kumari
- Department of Chemistry Indian Institute of Technology Bombay Powai, Mumbai 400076 India
| | - Sudip Kumar Bera
- Department of Chemistry Indian Institute of Technology Bombay Powai, Mumbai 400076 India
| | - Svenja Blickle
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Wolfgang Kaim
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Goutam Kumar Lahiri
- Department of Chemistry Indian Institute of Technology Bombay Powai, Mumbai 400076 India
| |
Collapse
|
11
|
Kumari M, Bera SK, Lahiri GK. Noninnocence of the deprotonated 1,2-bis((1 H-pyrrol-2-yl)methylene)hydrazine bridge in diruthenium frameworks - a function of co-ligands. Dalton Trans 2021; 50:9891-9903. [PMID: 34196336 DOI: 10.1039/d1dt01488a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The article deals with the sensitive electronic forms in accessible redox states of structurally and spectroscopically authenticated deprotonated 1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine (H2LR, R = H) or 1,2-bis((3,5-dimethyl-1H-pyrrol-2-yl)methylene)hydrazine (H2LR, R = Me), a BODIPY analogue bridged diruthenium complex as a function of varying ancillary ligands. It involved rac-(acac)2RuIII(μ-LR 2-)RuIII(acac)21a, R = H; 1b, R = Me (S = 1, acac = acetylacetonate), rac-[(bpy)2RuII(μ-L2-)RuII(bpy)2](ClO4)2 [2](ClO4)2 (S = 0, bpy = 2,2'-bipyridine) and diastereomeric [(pap)2RuII(μ-L2-)RuII(pap)2](ClO4)2meso-[3a](ClO4)2/rac-[3b](ClO4)2 (S = 0, pap = phenylazopyridine). The crystal structure established the linkage of the conjugated -C5[double bond, length as m-dash]N2-N3[double bond, length as m-dash]C6- central unit with the two terminal deprotonated pyrrole units of coordinated L2-. The bridging L2- in 1a, 1b, [2](ClO4)2, [3b](ClO4)2 and [3a](ClO4)2 was slightly twisted and planar with torsional angles of 41.54°, 42.91°, 37.38°, 35.33° and 0°, respectively, with regard to the central N2-N3 bond. The extent of twisting of the bridge followed an inverse relationship with the RuRu separation: 4.935/4.934 Å 1a/1b < 5.141 Å [2](ClO4)2 < 5.201 Å [3b](ClO4)2 < 5.351 Å [3a](ClO4)2. This is also attributed to the intermolecular ππ/CHπ interactions between the nearby aromatic rings of L and bpy or pap in [2](ClO4)2 or [3](ClO4)2, respectively. The multiple redox steps of the complexes varied appreciably based on the σ-donating (acac) and π-acidic (bpy, pap) characteristics of the ancillary ligands. Experimental (structure, EPR) and theoretical (DFT) evaluation pertaining to the electronic forms of 1n, 2n and 3n demonstrated the preferential involvement of L based frontier orbitals in electron transfer processes even in combination with the redox facile ruthenium ion. This in turn highlighted its redox non-innocent feature as in the case of well-documented metal coordinated quinonoid, formazanate, diimine (bpy), azo (pap) and β-diketiminate functions.
Collapse
Affiliation(s)
- Maya Kumari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sudip Kumar Bera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
12
|
Singh A, Dey S, Panda S, Lahiri GK. Redox Induced Tunable Functionalization of Picolylamines on Selective Ru‐Platform. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Aditi Singh
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Sanchaita Dey
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Sanjib Panda
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Goutam Kumar Lahiri
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| |
Collapse
|
13
|
Panda S, Goel P, Lahiri GK. Non-Spectator Feature of α-Diimine Mimicked Di/tetrahydro-bisisoquinoline and Biimidazopyridine on {Ru(acac)2
} Platform. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sanjib Panda
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| | - Puneet Goel
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| | - Goutam Kumar Lahiri
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| |
Collapse
|
14
|
Panda S, Singha Hazari A, Gogia M, Lahiri GK. Diverse Functionalization of Ruthenium-Chelated 2-Picolylamines: Oxygenation, Dehydrogenation, Cyclization, and N-Dealkylation. Inorg Chem 2020; 59:1355-1363. [DOI: 10.1021/acs.inorgchem.9b03065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sanjib Panda
- Department of Chemistry, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Arijit Singha Hazari
- Department of Chemistry, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Manish Gogia
- Department of Chemistry, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| |
Collapse
|