1
|
Hussain S, Kunthom R, Liu H. Hybrid Dendrimer Network based on Silsesquioxane and Glycidyl Methacrylate for Enhanced Adsorption of Iodine and Dyes in Environmental Remediation. Chem Asian J 2024; 19:e202400584. [PMID: 39031799 DOI: 10.1002/asia.202400584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/22/2024]
Abstract
A novel hybrid network was synthesized in two steps: the first step involved the attachment of glycidyl methacrylate (GMA) to octa(aminophenyl) silsesquioxane (OAPS) through a ring-opening reaction, forming a hybrid dendrimer structure, and the second step involved the cross-linking of hybrid dendrimer using an azobisisobutyronitrile initiator to create the final hybrid network of OAPS-GMA. The synthesized hybrid material was comprehensively characterized using fourier transform infrared Spectroscopy (FTIR), nuclear magnetic resonance ((1H, 13C, and 29Si NMR) spectroscopy, thermogravimetric Analysis (TGA), and scanning electron microscopy (SEM). The BET surface area was found to be 25.44 m2/g, and significant 2.341 cm3/g of total pore volume was observed. The TGA analysis shows that the material is highly stable up to 450 °C. The synthesized network demonstrated remarkable adsorption capacities for iodine and dyes. It exhibited an iodine adsorption capacity of 3.4 g/g from vapors and 874 mg/g from solution. Additionally, it showed significant adsorption capacities for Rhodamine B and Congo red, with values of 762 mg/g and 517 mg/g, respectively. This study not only provides a novel method for preparing GMA-functionalized silsesquioxane-based porous hybrid polymers but also contributes to advancing solutions for environmental pollution issues.
Collapse
Affiliation(s)
- Saddam Hussain
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Rungthip Kunthom
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Hongzhi Liu
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
2
|
Piskun YA, Ksendzov EA, Resko AV, Soldatov MA, Timashev P, Liu H, Vasilenko IV, Kostjuk SV. Phosphazene Functionalized Silsesquioxane-Based Porous Polymer as Thermally Stable and Reusable Catalyst for Bulk Ring-Opening Polymerization of ε-Caprolactone. Polymers (Basel) 2023; 15:1291. [PMID: 36904533 PMCID: PMC10007598 DOI: 10.3390/polym15051291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The bulk ring-opening polymerization (ROP) of ε-caprolactone using phosphazene-containing porous polymeric material (HPCP) has been studied at high reaction temperatures (130-150 °C). HPCP in conjunction with benzyl alcohol as an initiator induced the living ROP of ε-caprolactone, affording polyesters with a controlled molecular weight up to 6000 g mol-1 and moderate polydispersity (Ð~1.5) under optimized conditions ([BnOH]/[CL] = 50; HPCP: 0.63 mM; 150 °C). Poly(ε-caprolactone)s with higher molecular weight (up to Mn = 14,000 g mol-1, Ð~1.9) were obtained at a lower temperature, at 130 °C. Due to its high thermal and chemical stability, HPCP can be reused for at least three consecutive cycles without a significant decrease in the catalyst efficiency. The tentative mechanism of the HPCP-catalyzed ROP of ε-caprolactone, the key stage of which consists of the activation of the initiator through the basic sites of the catalyst, was proposed.
Collapse
Affiliation(s)
- Yuliya A. Piskun
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
- Department of Chemistry, Belarusian State University, 14 Leningradskaya St., 220050 Minsk, Belarus
| | - Evgenii A. Ksendzov
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
- Department of Chemistry, Belarusian State University, 14 Leningradskaya St., 220050 Minsk, Belarus
| | - Anastasiya V. Resko
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
| | - Mikhail A. Soldatov
- Department of Science and Technology Projects, D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Sq., 125047 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Hongzhi Liu
- Key Laboratory of Special Functional Aggregated Materials, Shandong University, 27 Shanda Nanlu, Jinan 250100, China
| | - Irina V. Vasilenko
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
- Department of Chemistry, Belarusian State University, 14 Leningradskaya St., 220050 Minsk, Belarus
| | - Sergei V. Kostjuk
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
- Department of Chemistry, Belarusian State University, 14 Leningradskaya St., 220050 Minsk, Belarus
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| |
Collapse
|
3
|
Cao DX, Chen Y, Jin WL, Li W, Wang R, Wang K, Tang AN, Zhu LN, Kong DM. Non-porous covalent organic polymers enable ultrafast removal of cationic dyes via carbonyl/hydroxyl-synergetic electrostatic adsorption. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Sadak AE, Cucu E, Hamur B, Ün İ, Altundas R. Cyclotriphosphazene and tricarbazole based microporous hyper-crosslinked conjugated polymer for CCUS: Exceptional CO2 selectivity and high capacity CO2, CH4, and H2 capture. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Huang Y, Kong Q, Zhang X, Peng H. DMSA-incorporated silsesquioxane-based hybrid polymer for selective adsorption of Pb(II) from wastewater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Xiong G, Gao S, Zhang Q, Ren B, You L, Ding F, He Y, Sun Y. High porosity cyclotriphosphazene-based hyper-crosslinked polymers as efficient cationic dye MB adsorbents. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Wang Y, Yang N, Soldatov M, Liu H. A novel phosphazene-based amine-functionalized porous polymer with high adsorption ability for I2, dyes and heavy metal ions. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Wang S, Meng X, Luo H, Yao L, Song X, Liang Z. Post-synthetic modification of conjugated microporous polymer with imidazolium for highly efficient anionic dyes removal from water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
|
10
|
Soldatov M, Wang Y, Liu H. Preparation of Porous Polymers Based on the Building Blocks of Cyclophosphazene and Cage‐like Silsesquioxane and Their Use as Basic Catalysts for Knoevenagel Reactions. Chem Asian J 2021; 16:1901-1905. [DOI: 10.1002/asia.202100444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Mikhail Soldatov
- Key Laboratory of Special Functional Aggregated Materials Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Yiqi Wang
- Key Laboratory of Special Functional Aggregated Materials Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Hongzhi Liu
- Key Laboratory of Special Functional Aggregated Materials Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
11
|
Zhao W, Huang Y, Chen R, Peng H, Liao Y, Wang Q. Facile preparation of thioether/hydroxyl functionalized polyhedral oligomeric silsesquioxanes hybrid polymer for ultrahigh selective adsorption of silver(I) ions. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Abid A, Razzaque S, Hussain I, Tan B. Eco-Friendly Phosphorus and Nitrogen-Rich Inorganic–Organic Hybrid Hypercross-linked Porous Polymers via a Low-Cost Strategy. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00385] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Amin Abid
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei 430074, China
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Shumaila Razzaque
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei 430074, China
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Science (LUMS), D.H.A., Lahore 54792, Pakistan
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
13
|
Gorlov M, Bredov N, Esin A, Sirotin I, Soldatov M, Oberemok V, Kireev VV. Novel Approach for the Synthesis of Chlorophosphazene Cycles with a Defined Size via Controlled Cyclization of Linear Oligodichlorophosphazenes [Cl(PCl 2=N) n-PCl 3] +[PCl 6] . Int J Mol Sci 2021; 22:ijms22115958. [PMID: 34073083 PMCID: PMC8199110 DOI: 10.3390/ijms22115958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
Despite a significant number of investigations in the field of phosphazene chemistry, the formation mechanism of this class of cyclic compounds is still poorly studied. At the same time, a thorough understanding of this process is necessary, both for the direct production of phosphazene rings of a given size and for the controlled cyclization reaction when it is secondary and undesirable. We synthesized a series of short linear phosphazene oligomers with the general formula Cl[PCl2=N]n–PCl3+PCl6– and studied their tendency to form cyclic structures under the influence of elevated temperatures or in the presence of nitrogen-containing agents, such as hexamethyldisilazane (HMDS) or ammonium chloride. It was established that linear oligophosphazenes are inert when heated in the absence of the mentioned cyclization agents, and the formation of cyclic products occurs only when these agents are involved in the process. The ability to obtain the desired size phosphazene cycle from corresponding linear chains is shown for the first time. Known obstacles, such as side interaction with the PCl6– counterion and a tendency of longer chains to undergo crosslinking elongation instead of cyclization are still relevant, and ways to overcome them are being discussed.
Collapse
Affiliation(s)
- Mikhail Gorlov
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia; (M.G.); (N.B.); (A.E.); (I.S.); (V.V.K.)
| | - Nikolay Bredov
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia; (M.G.); (N.B.); (A.E.); (I.S.); (V.V.K.)
| | - Andrey Esin
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia; (M.G.); (N.B.); (A.E.); (I.S.); (V.V.K.)
| | - Igor Sirotin
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia; (M.G.); (N.B.); (A.E.); (I.S.); (V.V.K.)
| | - Mikhail Soldatov
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia; (M.G.); (N.B.); (A.E.); (I.S.); (V.V.K.)
- Correspondence:
| | - Volodymyr Oberemok
- Taurida Academy, Department of Biochemistry, V. I. Vernadsky Crimean Federal University, Prospekt Akademika Vernadskogo 4, 295007 Simferopol, Russia;
| | - Vyacheslav V. Kireev
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia; (M.G.); (N.B.); (A.E.); (I.S.); (V.V.K.)
| |
Collapse
|
14
|
Wang Y, Soldatov M, Wang Q, Liu H. Phosphazene functionalized silsesquioxane-based porous polymers for absorbing I2, CO2 and dyes. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123491] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Chi H, Wang S, Li T, Li Z. Recent progress in using hybrid silicon polymer composites for wastewater treatment. CHEMOSPHERE 2021; 263:128380. [PMID: 33297284 DOI: 10.1016/j.chemosphere.2020.128380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Heavy metal ions, oil and organic pollutants in water does not only cause serious water pollution, but also pose serious threats to ecosystems and human health. To this end, water pollution has gradually gained human attention, and various wastewater treatment methods are emerging. Organosilicon polymer composites are a class of materials that contain organic-inorganic hybrid structures with the characteristics of hydrophobicity, thermal stability and easy modification, which provides a brand new solution for wastewater treatment. In this review, various structural features including amorphous, linear, and cage structure of silicon containing polymer composites and the removal mechanism targeting at heavy metal ions, oil and organic pollutants of silicon containing polymer composites are summarized. The viewpoints and challenges in adsorption and engineering application are discussed, and possible solutions are proposed.
Collapse
Affiliation(s)
- Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Shuxian Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zibiao Li
- Institute of Materials Research and Engineering, A∗STAR (Agency for Science, Technology and Research), Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore.
| |
Collapse
|
16
|
Ding S, Shi W, Zhang K, Xie Z. Bifunctional cyclomatrix polyphosphazene-based hybrid with abundant decorating groups: Synthesis and application as efficient electrochemical Pb(II) probe and methylene blue absorbent. J Colloid Interface Sci 2020; 587:683-692. [PMID: 33223242 DOI: 10.1016/j.jcis.2020.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 11/18/2022]
Abstract
HYPOTHESIS The construction of novel functional cyclomatrix polyphosphazenes (CPPs) hybrid, which with diverse decorating groups, is a challenging task due to the structural limitation of available reaction substrates (phenols and amines). EXPERIMENTS Herein, a phenolic hydroxyl (OH) modified ployamide derivative (P2) was successfully prepared via novel benzoxazine-isocyanide chemistry (BIC). A kind of CPP hybrid (P3), which with abundant functional groups (amide, tertiary amine, benzoxazine and phenolic hydroxyl) was prepared subsequently by the condensation between P2 and hexachlorocyclotriphosphazene (HCCP). Chemical structure, elemental composition, morphology, porous properties and crystallinity of P3 were systematically analyzed here. The electrochemical detection of lead ion (Pb2+) was realized by using P3-modified glassy carbon electrode (GCE/Nafion/P3) as the working electrode. Besides this, given the unique chemical structure and morphology of P3, the selective adsorption of methylene blue (MB) by P3 was also studied here. FINDINGS Experimental results indicated that that P3 can act as bifunctional hybrid material to solve environmental issues.
Collapse
Affiliation(s)
- Sheng Ding
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Wei Shi
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - Kesong Zhang
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Zhengfeng Xie
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
17
|
Abstract
Cage-like silsesquioxanes are considered to be ideal and versatile building blocks of hybrid materials due to their unique structures and excellent performance. This Perspective highlights recent advances in the field of cage-like silsesquioxane-based hybrid materials, ranging from monomer functionalization and materials preparation to application. The existing issues are reviewed and the challenges and prospects in this field are also discussed for further development and exploitation.
Collapse
Affiliation(s)
- Yajing Du
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
| | | |
Collapse
|
18
|
Progress in the Synthesis of Bifunctionalized Polyhedral Oligomeric Silsesquioxane. Polymers (Basel) 2019; 11:polym11122098. [PMID: 31847358 PMCID: PMC6960853 DOI: 10.3390/polym11122098] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/29/2023] Open
Abstract
Polyhedral oligomeric silsesquioxane (POSS) has been considered as one of the most promising nanofillers in academic and industrial research due to its unique multifunctional nanostructure, easy functionalization, hybrid nature, and high processability. The progress of POSS has been extensive, particularly applications based on single- or multiple-armed POSS. In polymer hybrids, in order to enhance the properties, bifunctional POSS has been incorporated into the backbone chain of the polymer. This review summarizes recent developments in the synthesis, modification, and application of bifunctional POSS-containing composite materials. This includes amino-POSS, hydroxyl-POSS, aromatic ring-POSS, ether-POSS, and vinyl groups-POSS and their applications, exemplified by polyurethanes (PUs) and polyimides (PIs). In addition, the review highlights the enhancement of thermal, mechanical, and optical properties of the composites.
Collapse
|