1
|
Biswas S, Thapa DK, Mandal L. Proton -conducting lanthanide metal-organic frameworks: a multifunctional platform. Dalton Trans 2025; 54:1750-1769. [PMID: 39688007 DOI: 10.1039/d4dt02692f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Lanthanide metal-organic frameworks (LMOFs) have established themselves as promising proton-conducting materials among all types of porous coordination polymers and covalent organic frameworks. The structural diversity of LMOFs and high oxophilicity with a high coordination number of lanthanide ions make LMOFs a standout material for proton conduction. In the last few years, ample research efforts have been devoted to designing and developing proton-conducting lanthanide metal-organic frameworks (PCLMOFs). Some of the PCLMOFs have shown great potential with proton conductivity comparable to that of commercially used perfluorosulfonic acid (PFSA) polymers for proton-exchange membranes (PEMs) in fuel cells. At present, it is apparent that PCLMOFs are becoming a potential platform to explore other functional properties (e.g. fluorescence sensing, gas adsorption, molecular magnetism, impedance sensing, ferroelectricity, and nonlinear optics). The intrinsic structural features of PCLMOFs inevitably bring the opportunity to introduce the multifunctional character of such materials. Therefore, any scope for additional functional properties must be investigated for this class of material. In this article, we concisely discuss the design strategy and structural features of some multifunctional PCLMOFs. Furthermore, multifunctional properties of some excellent PCLMOFs are reviewed. In addition, the prospect of PCLMOFs is briefly discussed in the context of real-world material applications.
Collapse
Affiliation(s)
- Soumava Biswas
- Department of Chemistry, Dr. Vishwanath Karad MIT World Peace University, Survey No. 124, Paud Rd, Kothrud, Pune 411038, Maharashtra, India.
| | - Dev Kumar Thapa
- Department of Chemistry, Dr. Vishwanath Karad MIT World Peace University, Survey No. 124, Paud Rd, Kothrud, Pune 411038, Maharashtra, India.
| | - Leena Mandal
- Department of Chemistry, Polba Mahavidyalaya, Polba, Hooghly, PIN-712148, West Bengal, India
| |
Collapse
|
2
|
Hong YL, Zuo SW, Du HY, Shi ZQ, Hu H, Li G. Four Lanthanide(III) Metal-Organic Frameworks Fabricated by Bithiophene Dicarboxylate for High Inherent Proton Conduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13745-13755. [PMID: 38446712 DOI: 10.1021/acsami.3c18999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Currently, it is still a challenge to directly achieve highly stable metal-organic frameworks (MOFs) with superior proton conductivity solely through the exquisite design of ligands and the attentive selection of metal nodes. Inspired by this, we are intrigued by a multifunctional dicarboxylate ligand including dithiophene groups, 3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid (H2DTD), and lanthanide ions with distinct coordination topologies. Successfully, four isostructural three-dimensional lanthanide(III)-based MOFs, [Ln2(DTD)3(DEF)4]·DEF·6H2O [LnIII = TbIII (Tb-MOF), EuIII (Eu-MOF), SmIII (Sm-MOF), and DyIII (Dy-MOF)], were solvothermally prepared, in which the effective proton transport will be provided by the coordinated or free solvent molecules, the crystalline water molecules, and the framework components, as well as a large number of highly electronegative S and O atoms. As expected, the four Ln-MOFs demonstrated the highest proton conductivities (σ) being 0.54 × 10-3, 3.75 × 10-3, 1.28 × 10-3, and 1.92 × 10-3 S·cm-1 for the four MOFs, respectively, at 100 °C/98% relative humidity (RH). Excitingly, Dy-MOF demonstrated an extraordinary ultrahigh σ of 1 × 10-3 S·cm-1 at 30 °C/98% RH. Additionally, the plausible proton transport mechanisms were emphasized.
Collapse
Affiliation(s)
- Yu-Ling Hong
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Shuai-Wu Zuo
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Hao-Yu Du
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Zhi-Qiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, P. R. China
| | - Hailiang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
3
|
Li Y, Feng J, Wang L, Li G. High proton conduction in two highly stable phenyl imidazole dicarboxylate-based Cd(II)-MOFs. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Ratiometric Fluorescent Sensor Based on Tb(III) Functionalized Metal-Organic Framework for Formic Acid. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248702. [PMID: 36557836 PMCID: PMC9781586 DOI: 10.3390/molecules27248702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Formic acid is a common chemical raw material, the effective detection of which is of importance to food safety and environmental quality. In this work, the lanthanide functionalized dual-emission metal-organic framework (TH25) was prepared as a ratiometric fluorescent sensor for formic acid. This ratiometric sensor has a good detection performance with high selectivity, sensitivity, and reproducibility. Together with a low limit of detection of 2.1 ppm, these characters promise the ability to sense at low levels as well as a practical detection ability. This work provides ideas for the design and synthesis of effective chemical sensors for organic acids.
Collapse
|
5
|
Sahoo S, Mondal S, Sarma D. Luminescent Lanthanide Metal Organic Frameworks (LnMOFs): A Versatile Platform towards Organomolecule Sensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
You LX, Zhang L, Cao SY, Liu W, Xiong G, Van Deun R, He YK, Ding F, Dragutan V, Sun YG. Synthesis, structure and luminescence of 3D lanthanide metal-organic frameworks based on 1,3-bis(3,5-dicarboxyphenyl) imidazolium chloride. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Two stable phenyl acyl thiourea carboxylate-based MOFs: Syntheses, crystal structures and proton conductive properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Xiang F, Chen S, Yuan Z, Li L, Fan Z, Yao Z, Liu C, Xiang S, Zhang Z. Switched Proton Conduction in Metal-Organic Frameworks. JACS AU 2022; 2:1043-1053. [PMID: 35647587 PMCID: PMC9131472 DOI: 10.1021/jacsau.2c00069] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 04/14/2023]
Abstract
Stimuli-responsive materials can respond to external effects, and proton transport is widespread and plays a key role in living systems, making stimuli-responsive proton transport in artificial materials of particular interest to researchers due to its desirable application prospects. On the basis of the rapid growth of proton-conducting porous metal-organic frameworks (MOFs), switched proton-conducting MOFs have also begun to attract attention. MOFs have advantages in crystallinity, porosity, functionalization, and structural designability, and they can facilitate the fabrication of novel switchable proton conductors and promote an understanding of the comprehensive mechanisms. In this Perspective, we highlight the current progress in the rational design and fabrication of stimuli-responsive proton-conducting MOFs and their applications. The dynamic structural change of proton transfer pathways and the role of trigger molecules are discussed to elucidate the stimuli-responsive mechanisms. Subsequently, we also discuss the challenges and propose new research opportunities for further development.
Collapse
|
9
|
Shi GQ, Wang HW, Wang QX, Li G. Water-mediated proton conductive properties of three water-stable metal-organic frameworks constructed by pyromellitic acid. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Ren HM, Wang HW, Jiang YF, Tao ZX, Mu CY, Li G. Proton Conductive Lanthanide-Based Metal-Organic Frameworks: Synthesis Strategies, Structural Features, and Recent Progress. Top Curr Chem (Cham) 2022; 380:9. [PMID: 35119539 DOI: 10.1007/s41061-022-00367-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/17/2022] [Indexed: 12/25/2022]
Abstract
In the fields of proton exchange membrane fuel cells as well as impedance recognition, molecular sieve, and biochemistry, the development of proton conductive materials is essential. The design and preparation of the next generation of proton conductive materials-crystalline metal-organic framework (MOF) materials with high proton conductivity and excellent water stability-are facing great challenges. Due to the large radius and high positive charge of lanthanides, they often interact with organic ligands to exhibit high coordination numbers and flexible coordination configurations, resulting in the higher stability of lanthanide-based MOFs (Ln-MOFs) than their transition metal analogues, especially regarding water stability. Therefore, Ln-MOFs have attracted considerable attention. This review offers a view of the latest progress of proton conductive Ln-MOFs, including synthesis strategy, structural characteristics, and advantages, proton conductivity, proton conductive mechanism, and applications. More importantly, by discussing structure-property relationships, we searched for and analyzed design techniques and directions of development of Ln-MOFs in the future. The latest progress of synthesis strategy, structural characteristics, proton conductive properties and mechanism and applications on Ln-MOFs. Ln-MOFS Lanthanide-based MOFs, MOF metal-organic framework, PEMFC proton exchange membrane fuel cells.
Collapse
Affiliation(s)
- Hui-Min Ren
- College of Chemistry and Green Catalysis Center, Zhengzhou University, 450001, Henan, PR China
| | - Hong-Wei Wang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, 450001, Henan, PR China
| | - Yuan-Fan Jiang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, 450001, Henan, PR China
| | - Zhi-Xiong Tao
- College of Chemistry and Green Catalysis Center, Zhengzhou University, 450001, Henan, PR China
| | - Chen-Yu Mu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, 450001, Henan, PR China
| | - Gang Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, 450001, Henan, PR China.
| |
Collapse
|
11
|
Proton conduction in two highly stable cadmium(II) metal-organic frameworks built by substituted imidazole dicarboxylates. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
|
13
|
Yuan Z, Hou G, Han L. A Terbium‐Based MOF as fluorescent probe for the detection of Malachite Green, Fe
3+
and MnO
4
−. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhuang‐Dong Yuan
- School of Chemistry Chemical Engineering and Materials Jining University Qufu 273155 P. R. China
| | - Guo‐Zheng Hou
- School of Chemistry Chemical Engineering and Materials Jining University Qufu 273155 P. R. China
| | - Li‐Juan Han
- School of Chemistry Chemical Engineering and Materials Jining University Qufu 273155 P. R. China
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
14
|
Zhao L, Zhu RR, Wang S, He L, Du L, Zhao QH. Multiple Strategies to Fabricate a Highly Stable 2D Cu IICu I-Organic Framework with High Proton Conductivity. Inorg Chem 2021; 60:16474-16483. [PMID: 34657429 DOI: 10.1021/acs.inorgchem.1c02312] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Using multifunctional organic ligands with multiple acidic groups (carboxylate and sulfonate groups) to synthesize metal-organic frameworks (MOFs) bearing effective H-bond networks is a promising strategy to obtain highly proton conductive materials. In this work, a highly stable two-dimensional MOF, [CuII5CuI2(μ3-OH)4(H2O)6(L)2(H2L)2]·3H2O (denoted as YCu161; H3L = 6-sulfonaphthalene-1,4-dicarboxylic acid) containing mixed-valence [CuII5CuI2(μ3-OH)4]8+ subunits, was successfully prepared. It exhibited excellent stability and temperature- and humidity-dependent proton conduction properties. Its optimal proton conductivity reached 1.84 × 10-3 S cm-1 at 90 °C and 98% relative humidity. On the basis of a crystal structure analysis, water vapor adsorption test results, and activation energy calculations, we deduced the proton conduction pathway and mechanism. Apparently, uncoordinated sulfonic and carboxyl groups and a network of abundant H-bonds inside the framework were responsible for the efficient proton transfer. Therefore, the strategy of selecting suitable bifunctional ligands to construct two-dimensional Cu-cluster-based MOFs with excellent proton conductivity is feasible.
Collapse
Affiliation(s)
- Lijia Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Rong-Rong Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Shuyu Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Liancheng He
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Qi-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| |
Collapse
|
15
|
Torad NL, El-Hosainy H, Esmat M, El-Kelany KE, Tahawy R, Na J, Ide Y, Fukata N, Chaikittisilp W, Hill JP, Zhang X, El-Kemary M, Yamauchi Y. Phenyl-Modified Carbon Nitride Quantum Nanoflakes for Ultra-Highly Selective Sensing of Formic Acid: A Combined Experimental by QCM and Density Functional Theory Study. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48595-48610. [PMID: 34633180 DOI: 10.1021/acsami.1c12196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Formic acid (HCOOH) is an important intermediate in chemical synthesis, pharmaceuticals, the food industry, and leather tanning and is considered to be an effective hydrogen storage molecule. Direct contact with its vapor and its inhalation lead to burns, nerve injury, and dermatosis. Thus, it is critical to establish efficient sensing materials and devices for the rapid detection of HCOOH. In the present study, we introduce a chemical sensor based on a quartz crystal microbalance (QCM) sensor capable of detecting trace amounts of HCOOH. This sensor is composed of colloidal phenyl-terminated carbon nitride (Ph-g-C3N4) quantum nanoflakes prepared using a facile solid-state method involving the supramolecular preorganization technology. In contrast to other synthetic methods of modified carbon nitride materials, this approach requires no hard templates, hazardous chemicals, or hydrothermal treatments. Comprehensive characterization and density functional theory (DFT) calculations revealed that the QCM sensor designed and prepared here exhibits enhanced detection sensitivity and selectivity for volatile HCOOH, which originates from chemical and hydrogen-bonding interactions between HCOOH and the surface of Ph-g-C3N4. According to DFT results, HCOOH is located close to the cavity of the Ph-g-C3N4 unit, with bonding to graphitic carbon and pyridinic nitrogen atoms of the nanoflake. The sensitivity of the Ph-g-C3N4-nanoflake-based QCM sensor was found to be the highest (128.99 Hz ppm-1) of the substances studied, with a limit of detection (LOD) of HCOOH down to a sub-ppm level of 80 ppb. This sensing technology based on phenyl-terminated attached-g-C3N4 nanoflakes establishes a simple, low-cost solution to improve the performance of QCM sensors for the effective discrimination of HCOOH, HCHO, and CH3COOH vapors using smart electronic noses.
Collapse
Affiliation(s)
- Nagy L Torad
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210016, China
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Hamza El-Hosainy
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohamed Esmat
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University (BSU), Beni-Suef 62511, Egypt
| | - Khaled E El-Kelany
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Rafat Tahawy
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuke Ide
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Naoki Fukata
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Watcharop Chaikittisilp
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P Hill
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210016, China
| | - Maged El-Kemary
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
16
|
Tang J, Zhang F, Liang X, Dai G, Qu F. Abundant defects of zirconium-organic xerogels: High anhydrous proton conductivities over a wide temperature range and formic acid impedance sensing. J Colloid Interface Sci 2021; 607:181-191. [PMID: 34500417 DOI: 10.1016/j.jcis.2021.08.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022]
Abstract
There exists a challenge to develop solid-state proton conductors with high conductivity not only at high working temperatures (>353 K) but at start-up temperature and even at subzero temperature (<273 K) in cold climates or high-altitude drones. Here we present a series of zirconium-organic xerogels (Zr/Fum-xerogels) with porosity and defectivity, supported by N2 sorption, thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS), exhibiting a high anhydrous proton conductivity over the temperature range of 233 to 433 K. The anhydrous conductivity of Zr/Fum-xerogel-0.04 reaches 5.68 × 10-4 (233 K) and 2.5 × 10-2 S cm-1 (433 K), situating in the leading level of all anhydrous conductors reported to date. Further, the defective effects on acidities and conductive mechanisms of xerogels, especially structural changes of water clusters generated by varying temperatures are investigated by ion exchange capacity (IEC), X-ray photoelectron spectroscopy (XPS), temperature programmed desorption of NH3 (NH3-TPD) and in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The zirconium-organic xerogels with outstanding conducting performance is further implemented as impedance sensor towards formic acid.
Collapse
Affiliation(s)
- Jiyu Tang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, PR China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, PR China.
| | - Xiaoqiang Liang
- College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, PR China.
| | - Guoliang Dai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, PR China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, PR China.
| |
Collapse
|
17
|
Liu R, Yu YH, Wang HW, Liu YY, Li G. High and Tunable Proton Conduction in Six 3D-Substituted Imidazole Dicarboxylate-Based Lanthanide-Organic Frameworks. Inorg Chem 2021; 60:10808-10818. [PMID: 34210127 DOI: 10.1021/acs.inorgchem.1c01522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Six isostructural three-dimensional (3D) Ln(III)-organic frameworks, {[Ln2(HMIDC)2(μ4-C2O4)(H2O)3]·4H2O}n [LnIII = GdIII (1), EuIII (2), SmIII (3), NdIII (4), PrIII (5), and CeIII (6)], have been fabricated by using a multifunctional ligand of 2-methyl-1H-imidazole-4,5-dicarboxylic acid (H3MIDC). Ln-metal-organic frameworks (MOFs) 1-6 present 3D structures and possess abundant H-bonded networks between imidazole-N atoms and coordinated and free water molecules. All the six Ln-MOFs demonstrate humidity- and temperature-dependent proton conductivity (σ) having the optimal values of 2.01 × 10-3, 1.40 × 10-3, 0.93 × 10-3, 2.25 × 10-4, 1.11 × 10-4, and 0.96 × 10-4 S·cm-1 for 1-6, respectively, at 100 °C/98% relative humidity, in the order of CeIII (6) < PrIII (5) < NdIII (4) < SmIII (3) < EuIII (2) < GdIII (1). In particular, the σ for 1 is 1 order of magnitude higher than that for 6, and it enhances systematically according to the decreasing order of the ionic radius, indicating that the lanthanide-contraction tactics can effectively regulate the proton conductivity while retaining the proton conduction routes. This will offer valuable guidance for the acquisition of new proton-conducting materials. In addition, the outstanding water stability and electrochemical stability of such Ln-MOFs will afford a solid material basis for future applications.
Collapse
Affiliation(s)
- Ruilan Liu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou, 450001 Henan, P. R. China
| | - Yi-Hong Yu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou, 450001 Henan, P. R. China
| | - Hong-Wei Wang
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou, 450001 Henan, P. R. China
| | - Yu-Yang Liu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou, 450001 Henan, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou, 450001 Henan, P. R. China
| |
Collapse
|
18
|
Chakraborty D, Ghorai A, Chowdhury A, Banerjee S, Bhaumik A. A Tetradentate Phosphonate Ligand-based Ni-MOF as a Support for Designing High-performance Proton-conducting Materials. Chem Asian J 2021; 16:1562-1569. [PMID: 33885226 DOI: 10.1002/asia.202100270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Indexed: 11/09/2022]
Abstract
Developing a robust metal-organic framework (MOF) which facilitates proton hopping along the pore channels is very demanding in the context of fabricating an efficient proton-conducting membrane for fuel cells. Herein, we report the synthesis of a novel tetradentate aromatic phosphonate ligand H8 L (L=tetraphenylethylene tetraphosphonic acid) based Ni-MOF, whose crystal structure has been solved from single-crystal X-ray diffraction. Ni-MOF [Ni2 (H4 L)(H2 O)9 (C2 H7 SO)(C2 H7 NCO)] displays a monoclinic crystal structure with a space group of P 21 /c, a=11.887 Å, b=34.148 Å, c=11.131 Å, α=γ=90°, β=103.374°, where a nickel-hexahydrate moiety located inside the void space of the framework through several H-bonding interactions. Upon treatment of the Ni-MOF in different pH media as well as solvents, the framework remained unaltered, suggesting the presence of strong H-bonding interactions in the framework. High framework stability of Ni-MOF bearing H-bonding interactions motivated us to explore this metal-organic framework material as proton-conducting medium after external proton doping. Due to the presence of a large number of H-bonding interactions and the presence of water molecules in the framework we have carried out the doping of organic p-toluenesulfonic acid (PTSA) and inorganic sulphuric acid (SA) in this Ni-MOF and observed high proton conductivity of 5.28×10-2 S cm-1 at 90 °C and 98% relative humidity for the SA-doped material. Enhancement of proton conductivity by proton doping under humid conditions suggested a very promising feature of this Ni-MOF.
Collapse
Affiliation(s)
- Debabrata Chakraborty
- School of Materials Science Indian Association for the Cultivation of Science, Kolkata, Jadavpur, 700 032, India
| | - Arijit Ghorai
- Materials Science Center, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Avik Chowdhury
- School of Materials Science Indian Association for the Cultivation of Science, Kolkata, Jadavpur, 700 032, India
| | - Susanta Banerjee
- Materials Science Center, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Asim Bhaumik
- School of Materials Science Indian Association for the Cultivation of Science, Kolkata, Jadavpur, 700 032, India
| |
Collapse
|
19
|
Wu Y, Hua C, Liu Z, Yang J, Huang R, Li M, Liu K, Miao R, Fang Y. High-Performance Sensing of Formic Acid Vapor Enabled by a Newly Developed Nanofilm-Based Fluorescent Sensor. Anal Chem 2021; 93:7094-7101. [PMID: 33905230 DOI: 10.1021/acs.analchem.1c00576] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although it is widely used in industry and food products, formic acid can be dangerous owing to its corrosive properties. Accurate determination of formic acid would not only benefit its qualified uses but also be an effective way to avoid corrosion or injury from inhalation, swallowing, or touching. Herein, we present a nanofilm-based fluorescent sensor for formic acid vapor detection with a wide response range, fast response speed, and high sensitivity and selectivity. The nanofilm was synthesized at a humid air/dimethyl sulfoxide (DMSO) interface through dynamic covalent condensation between two typically designed building blocks, de-tert-butyl calix[4]arene-tetrahydrazide (CATH) and 4,4',4″,4‴-(ethene-1,1,2,2-tetrayl)tetra-benzaldehyde (ETBA). The as-prepared nanofilm is uniform, flexible, fluorescent, and photochemically stable. The thickness and fluorescence intensity of the nanofilm can be facilely adjusted by varying the concentration of the building blocks and the sensing performance of the nanofilm can be optimized accordingly. Based on the nanofilm, a fluorescent sensor with a wide response range (4.4 ppt-4400 ppm) for real-time and online detection of formic acid vapor was built. With the sensor, a trace amount (0.01%) of formic acid in petroleum ether (60-90 °C) can be detected within 3 s. Besides, fluorescence quenching of the nanofilm by formic acid vapor can be visualized. It is believed that the sensor based on the nanofilm would find real-life applications in corrosion and injury prevention from formic acid.
Collapse
Affiliation(s)
- Ying Wu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Chunxia Hua
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Zhongshan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Jinglun Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Min Li
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.,Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
20
|
|
21
|
Shao R, Li D, Zhang MY, Zhao J, Tan XM, Zhang YQ. Heterometallic La(III)-Co(II) coordination polymers: treatment activity on diabetic foot by reducing the TLR-4–NF-κB signaling pathway activation in the plantar tissue. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1793357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Rui Shao
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming-Yi Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhao
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao-Mei Tan
- Department of Medicine, People’s Hospital, Chongqing, China
| | - Yong-Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
22
|
|
23
|
Abstract
The synthesis methods, structures and applications of Bi(iii)-based MOFs in catalysis, adsorption, fluorescence, etc. are reviewed.
Collapse
Affiliation(s)
- Qing-Xu Wang
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Gang Li
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
24
|
|
25
|
Li C, Yue Q, Xu Y, Ping E, Zhang L, Zhou Y. 3-D lanthanide-organic frameworks constructed by 2,2′-bipyridine-3,3′-dicarboxylic acid and oxalic acid: Structure, photoluminescence and luminescent sensing properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|