1
|
Singh R, Popat KC. Enhancing Antibacterial Properties of Titanium Implants through Covalent Conjugation of Self-Assembling Fmoc-Phe-Phe Dipeptide on Titania Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61714-61724. [PMID: 39478289 PMCID: PMC11565481 DOI: 10.1021/acsami.4c13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Bacterial infections and biofilm formation are significant challenges for medical implants. While titanium nanotube engineering improves biocompatibility, it cannot prevent bacterial adhesion and biofilm formation. Optimizing the biomaterial's surface chemistry is vital for its desired functioning in the biological environment. This study demonstrates the covalent conjugating of the self-assembling dipeptide N-fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) onto titanium nanotube surfaces (TiNTs) without altering the topography. Fmoc-FF peptides, in conjugation with TiNTs, can inhibit biofilm formation, eradicate pre-existing biofilms, and kill bacteria. This functionalization imparts antibacterial properties to the surface while retaining beneficial nanotube topography, synergistically enhancing bioactivity. Surface characterization by XPS, FT-IR, EDS, and SEM confirmed the successful functionalization. Bacterial adhesion experiments showed a significantly improved antibacterial activity of the functionalized TiNT surfaces. This study opens future possibilities for associating biomedical applications such as cell-cell interactions, tissue engineering, and controlled drug delivery of multifunctional self-assembling short peptides with implant materials through surface functionalization.
Collapse
Affiliation(s)
- Ramesh Singh
- Department
of Bioengineering, College of Engineering and Computing, George Mason University, Fairfax, Virginia 22030, United States
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Ketul C. Popat
- Department
of Bioengineering, College of Engineering and Computing, George Mason University, Fairfax, Virginia 22030, United States
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
2
|
Cui P, Shao T, He J, Tang W, Yu M, Zhao W, Liu J. Preparation, structural and morphological characterization of cartilage type II collagen peptide assemblies from sturgeon head. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8907-8915. [PMID: 38967325 DOI: 10.1002/jsfa.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Sturgeon cartilage type II collagen peptides (SHCPs) can self-assemble and be used to prepare collagen peptide assemblies. Self-assembled peptides have great potential for applications in the food industry. In the present study, self-assembled peptides were prepared from sturgeon cartilage and then characterized. RESULTS The SHCPs self-assembled and formed collagen peptide assemblies. After response surface experiment optimization, the optimal enzyme digestion process comprised 43.1 °C, 3.37 h and 0.96% enzyme addition, and the peptide yield was 78.46%. Physicochemical analysis showed that the SHCPs were amphiphilic, with an average molecular weight of 1081 Da, and were rich in hydrophobic amino acids. Peptide sequence identification showed that the peptides of SHCPs with polar amino acids followed by hydrophobic amino acids could be self-assembled through hydrogen bonding and hydrophobic interaction. Through turbidity experiments, Fourier transform infrared spectroscopy and scanning electron microscopy, we demonstrated that SHCPs can self-assemble into reticular and tubular structures under specific conditions. Furthermore, both the SHCPs-Ca and SHCPs-Mg assemblies were stabilized within a pH range consistent with that of the human gastrointestinal tract. CONCLUSION The present study provides a simple and safe method for preparing novel self-assembled peptide materials from sturgeon by-products, providing a scientific basis for the exploitation of sturgeon cartilage and potentially reducing resource wastage. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Tianlun Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Jianfei He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Mingxiao Yu
- Meitek Technology Company Limited, Qingdao, China
| | - Weixue Zhao
- Meitek Technology Company Limited, Qingdao, China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
Singh R, Kansara K, Yadav P, Mandal S, Varshney R, Gupta S, Kumar A, Maiti PK, Bhatia D. DNA tetrahedral nanocages as a promising nanocarrier for dopamine delivery in neurological disorders. NANOSCALE 2024; 16:15158-15169. [PMID: 39091152 DOI: 10.1039/d4nr00612g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Dopamine is a neurotransmitter in the central nervous system that is essential for many bodily and mental processes, and a lack of it can cause Parkinson's disease. DNA tetrahedral (TD) nanocages are promising in bio-nanotechnology, especially as a nanocarrier. TD is highly programmable, biocompatible, and capable of cell differentiation and proliferation. It also has tissue and blood-brain barrier permeability, making it a powerful tool that could overcome potential barriers in treating neurological disorders. In this study, we used DNA TD as a carrier for dopamine to cells and zebrafish embryos. We investigated the mechanism of complexation between TD and dopamine hydrochloride using gel electrophoresis, fluorescence and circular dichroism (CD) spectroscopy, atomic force microscopy (AFM), and molecular dynamic (MD) simulation tools. Further, we demonstrate that these dopamine-loaded DNA TD nanostructures enhanced cellular uptake and differentiation ability in SH-SY5Y neuroblastoma cells. Furthermore, we extended the study to zebrafish embryos as a model organism to examine survival and uptake. The research provides valuable insights into the complexation mechanism and cellular uptake of dopamine-loaded DNA tetrahedral nanostructures, paving the way for further advancements in nanomedicine for Parkinson's disease and other neurological disorders.
Collapse
Affiliation(s)
- Ramesh Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujrat, India.
| | - Krupa Kansara
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujrat, India.
| | - Pankaj Yadav
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujrat, India.
| | - Sandip Mandal
- Department of Physics, Indian Institute of Science, Bangalore, India
| | - Ritu Varshney
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujrat, India.
| | - Sharad Gupta
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujrat, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, India
| | - Prabal K Maiti
- Department of Physics, Indian Institute of Science, Bangalore, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujrat, India.
| |
Collapse
|
4
|
Kautu A, Sharma S, Singh R, Negi SS, Singh N, Swain N, Kumar V, Kumar N, Gupta P, Bhatia D, Joshi KB. Metallopeptide nanoreservoirs for concurrent imaging and detoxification of lead (Pb) from human retinal pigment epithelial (hRPE1) cells. NANOSCALE 2024; 16:14940-14952. [PMID: 39046356 DOI: 10.1039/d4nr02236j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inspired by natural metallopeptides, our work focuses on engineering self-assembling nanostructures of C2-symmetric metallopeptide conjugates (MPC) from a pyridine-bis-tripeptide bioprobe that uniquely detects lead (Pb2+) ions by emitting a fluorescence signal at 450 nm, which is further intensified in the presence of DAPI (λem = 458 nm), enhancing the bioimaging quality. This study enables precise lead quantification by modulating the ionic conformation and morphology. Experimental and theoretical insights elucidate the nanostructure formation mechanism, laying the groundwork for materials encapsulation and advancing lead detoxification. Our proof-of-principle experiment, demonstrating actin filament recovery in lead-treated cells, signifies therapeutic potential for intracellular lead aggregation and introduces novel avenues in biotechnological applications within biomaterials science.
Collapse
Affiliation(s)
- Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Ramesh Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat 382355, India.
| | - Saurabh Singh Negi
- Computational Catalysis Centre, Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India.
| | - Narendra Singh
- Indian Institute of Technology Kanpur, U.P., 208016, India
| | - Narayan Swain
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Vikas Kumar
- Department of Chemistry, Government College Khimlasha, M.P., India
| | - Nikunj Kumar
- Computational Catalysis Centre, Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India.
| | - Puneet Gupta
- Computational Catalysis Centre, Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat 382355, India.
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| |
Collapse
|
5
|
Singh R, Sharma S, Kautu A, Joshi KB. Self-assembling short peptide amphiphiles as versatile delivery agents: a new frontier in antibacterial research. Chem Commun (Camb) 2024; 60:7687-7696. [PMID: 38958435 DOI: 10.1039/d4cc01762e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Self-assembling short peptide amphiphiles, crafted through a minimalistic approach, spontaneously generate well-ordered nanostructures, facilitating the creation of precise nanostructured biomaterials for diverse biomedical applications. The seamless integration of bioactive metal ions and nanoparticles endows them with the potential to serve as pioneering materials in combating bacterial infections. Nanomanipulation of these molecules' binary structures enables effective penetration of membranes, forming structured nanoarchitectures with antibacterial properties. Through a comprehensive exploration, we attempt to reveal the innovative potential of short peptide amphiphiles, particularly in conjugation with metal cations and nanoparticles, offering insights for future research trajectories.
Collapse
Affiliation(s)
- Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India.
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India.
| | - Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India.
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India.
| |
Collapse
|
6
|
Kosara S, Singh R, Bhatia D. Structural DNA nanotechnology at the nexus of next-generation bio-applications: challenges and perspectives. NANOSCALE ADVANCES 2024; 6:386-401. [PMID: 38235105 PMCID: PMC10790967 DOI: 10.1039/d3na00692a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
DNA nanotechnology has significantly progressed in the last four decades, creating nucleic acid structures widely used in various biological applications. The structural flexibility, programmability, and multiform customization of DNA-based nanostructures make them ideal for creating structures of all sizes and shapes and multivalent drug delivery systems. Since then, DNA nanotechnology has advanced significantly, and numerous DNA nanostructures have been used in biology and other scientific disciplines. Despite the progress made in DNA nanotechnology, challenges still need to be addressed before DNA nanostructures can be widely used in biological interfaces. We can open the door for upcoming uses of DNA nanoparticles by tackling these issues and looking into new avenues. The historical development of various DNA nanomaterials has been thoroughly examined in this review, along with the underlying theoretical underpinnings, a summary of their applications in various fields, and an examination of the current roadblocks and potential future directions.
Collapse
Affiliation(s)
- Sanjay Kosara
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Ramesh Singh
- Department of Mechanical Engineering, Colorado State University Fort Collins CO USA
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| |
Collapse
|
7
|
Yu D, Cui S, Chen L, Zheng S, Zhao D, Yin X, Yang F, Chen J. Marine-Derived Bioactive Peptides Self-Assembled Multifunctional Materials: Antioxidant and Wound Healing. Antioxidants (Basel) 2023; 12:1190. [PMID: 37371920 DOI: 10.3390/antiox12061190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Peptide self-assembling materials have received significant attention from researchers in recent years, emerging as a popular field in biological, environmental, medical, and other new materials studies. In this study, we utilized controllable enzymatic hydrolysis technology (animal proteases) to obtain supramolecular peptide self-assembling materials (CAPs) from the Pacific oyster (Crassostrea gigas). We conducted physicochemical analyses to explore the pro-healing mechanisms of CAPs on skin wounds in both in vitro and in vivo experiments through a topical application. The results demonstrated that CAPs exhibit a pH-responsive behavior for self-assembly and consist of peptides ranging from 550 to 2300 Da in molecular weight, with peptide chain lengths of mainly 11-16 amino acids. In vitro experiments indicated that CAPs display a procoagulant effect, free radical scavenging activity, and promote the proliferation of HaCaTs (112.74% and 127.61%). Moreover, our in vivo experiments demonstrated that CAPs possess the ability to mitigate inflammation, boost fibroblast proliferation, and promote revascularization, which accelerates the epithelialization process. Consequently, a balanced collagen I/III ratio in the repaired tissue and the promotion of hair follicle regeneration were observed. With these remarkable findings, CAPs can be regarded as a natural and secure treatment option with high efficacy for skin wound healing. The potential of CAPs to be further developed for traceless skin wound healing is an exciting area for future research and development.
Collapse
Affiliation(s)
- Dingyi Yu
- Marine College, Shandong University, Weihai 264209, China
| | - Shenghao Cui
- Marine College, Shandong University, Weihai 264209, China
| | - Liqi Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Shuang Zheng
- Marine College, Shandong University, Weihai 264209, China
| | - Di Zhao
- Marine College, Shandong University, Weihai 264209, China
| | - Xinyu Yin
- Marine College, Shandong University, Weihai 264209, China
| | - Faming Yang
- Marine College, Shandong University, Weihai 264209, China
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 265599, China
| |
Collapse
|
8
|
Kumar Tripathi S, Kesharwani K, Saxena D, Singh R, Kautu A, Sharma S, Pandey A, Chopra S, Ballabh Joshi K. Silver-Nanoparticle-Embedded Short Amphiphilic Peptide Nanostructures and Their Plausible Application to Reduce Bacterial Infections. ChemMedChem 2023; 18:e202200654. [PMID: 36604305 DOI: 10.1002/cmdc.202200654] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
The microbiota-gut-brain axis (GBA) plays a critical role in the development of neurodegenerative diseases. Dysbiosis of the intestinal microbiome causes a significant alteration in the gut microbiota of Alzheimer's disease (AD) patients, followed by neuroinflammatory processes. Thus, AD beginning in the gut is closely related to an imbalance in gut microbiota, and hence a multidomain approach to reduce this imbalance by exerting positive effects on the gut microbiota is needed. In one example, a tyrosine-based short peptide amphiphile (sPA) was used to synthesize antibacterial AgNPs-sPA nanostructures. Such nanostructures showed high biocompatibility and low cytotoxicity, and therefore work as model drug delivery agents for addressing local bacterial infections. These may have therapeutic value for the treatment of microbiota-triggered progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Satyendra Kumar Tripathi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Deepanshi Saxena
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Archna Pandey
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| |
Collapse
|
9
|
Singh R, Yadav P, Naveena A H, Bhatia D. Cationic lipid modification of DNA tetrahedral nanocages enhances their cellular uptake. NANOSCALE 2023; 15:1099-1108. [PMID: 36562521 DOI: 10.1039/d2nr05749b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Self-assembled DNA nanocages are among the most promising candidates for bioimaging and payload delivery into cells. DNA nanocages have great potential to efficiently address drug resistance and nucleic acid delivery problems due to precise control of their shape and size, and excellent biocompatibility. Although DNA nanostructures demonstrate some cellular uptake, because they bear a highly negative charge, the uptake of tetrahedral nanostructures is hindered by electrostatic repulsion. In this study, we describe a method to enhance the cellular uptake of DNA nanostructures using a binary system containing DNA and a positively charged head group with a hydrophobic lipid chain containing lipids for cellular internalization. Here we represent the functionalization of a model cage, DNA tetrahedron (TD) with a cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA). Atomic force microscopy (AFM) and other standard characterization techniques were used to explore the co-assembly of the DNA tetrahedron and DOTMA. We revealed a simple confocal microscopy-based approach to show the enhancement in the cellular uptake of DNA nanocages. This new method will find multiple applications in delivery applications such as gene transfection, drug delivery and targeted bioimaging.
Collapse
Affiliation(s)
- Ramesh Singh
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Pankaj Yadav
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Hema Naveena A
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
10
|
Kesharwani K, Kautu A, Sharma S, Singh R, Kumar V, Tripathi SK, Shukla P, Joshi KB. Short peptide amphiphile nanostructures facilitate sunlight-induced nanowelding of gold nanosheets. Chem Commun (Camb) 2022; 58:13815-13818. [PMID: 36444804 DOI: 10.1039/d2cc05392f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An effortless thermoplasmonic welding of multi-shaped gold nanosheets is achieved by ordinary and simple sunlight irradiation. A light-matter interaction occurred via the nanogaps of smaller nanosheets, leading to the enhancement of the electromagnetic field and thus effectively concentrating the heat at the welding point. The sPA peptide nanostructure facilitates the nanowelding of small caged gold nanostructures.
Collapse
Affiliation(s)
- Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India. .,Indian Institute of Technology Gandhinagar (IITGN), India
| | - Vikas Kumar
- Department of Chemistry, IISc, Bengaluru, Karnataka, India
| | - Satyendra Kumar Tripathi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Prashant Shukla
- Department of Physics, School of Physical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| |
Collapse
|
11
|
Kesharwani K, Singh R, Tripathi SK, Kaul G, Akhir A, Saxena D, Kumar V, Mishra NK, Chopra S, Joshi KB. Antimicrobial Activity of Silver Nanoparticles Loaded Biomimetic Isomeric Short Lipopeptide Nanostructures. ChemistrySelect 2022. [DOI: 10.1002/slct.202202234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Khushboo Kesharwani
- Department of Chemistry School of Chemical Science and Technology Dr. Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP 470003 India
| | - Ramesh Singh
- Department of Chemistry School of Chemical Science and Technology Dr. Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP 470003 India
| | - Satyendra Kumar Tripathi
- Department of Chemistry School of Chemical Science and Technology Dr. Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP 470003 India
| | - Grace Kaul
- Department of Microbiology CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Abdul Akhir
- Department of Microbiology CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow India
| | - Deepanshi Saxena
- Department of Microbiology CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow India
| | - Vikas Kumar
- Department of Chemistry Indian Institute of Science Bengaluru Karnataka India
| | | | - Sidharth Chopra
- Department of Microbiology CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Khashti Ballabh Joshi
- Department of Chemistry School of Chemical Science and Technology Dr. Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP 470003 India
| |
Collapse
|
12
|
Xu M, Zhou B, Ding Y, Du S, Su M, Liu H. Programmable Oligonucleotide-Peptide Complexes: Synthesis and Applications. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-021-1265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Oral delivery of marine shellfish supramolecule peptides for skin wound healing. Colloids Surf B Biointerfaces 2022; 216:112592. [PMID: 35636327 DOI: 10.1016/j.colsurfb.2022.112592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 01/17/2023]
Abstract
Oral administration of peptides/proteins with superior efficacy and fewer side effects is the most advantageous route of administration. In this study, we utilized controllable enzymatic (animal protease) hydrolysis technology to prepare active polypeptide self-assembling supramolecular (APs) from marine shellfish meat to explore the functional mechanism of APs in in vitro and in vivo (oral administration) experiments . In vitro experiments revealed that APs with self-assembly tendency had multifunctional activities. In vivo experiments indicated that oral administration of naturally safe APs could inhibited inflammation, promoted fibroblast proliferation and revascularization, and accelerated the epithelialization process, thus favoring a balanced repair tissue collagen I/III ratio and the promotion of hair follicle regeneration to achieve scarless healing, which was also relevant to "skin-gut" axis. These results showed that APs, as demonstrated in this study, promoted dermal wound healing in mice and may be developed and used to treat skin wounds.
Collapse
|
14
|
Kesharwani K, Singh R, Kumar N, Singh N, Gupta P, Joshi KB. Mercury-instructed assembly (MiA): architecting clathrin triskelion-inspired highly functional C3-symmetric triskelion nanotorus functional structures into microtorus structures. NANOSCALE 2022; 14:10200-10210. [PMID: 35796347 DOI: 10.1039/d2nr01524b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To detect heavy metal toxicity using self-assembled nanostructures, a clathrin triskelion-inspired highly functional C3-symmetric trimerized biotinylated di-tryptophan peptide was used. This triskelion peptide is known to self-assemble into nanotorus-like structures and can therefore act as a nanocage for various analytes. In this work, in addition to spectroscopy, force and electron microscopy were successfully used to detect the effect of toxic metal ions such as zinc, cadmium, and mercury by exploiting the change in the nanotorus morphology. Different concentrations of mercury led to the expansion of nanotorus structures into microtori. Therefore, we provide a unique application of heavy metal toxicity by utilizing "material nanoarchitectonics" to architect nanotorus structures into higher-order microtorus structures, as instructed by mercury. Such a strategy can make heavy metal sensing easier for materials scientists and open new avenues for biomedical/environmental science applications.
Collapse
Affiliation(s)
- Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr.HarisinghGourVishwavidyalaya (A Central University), Sagar, M.P., 470003, India.
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr.HarisinghGourVishwavidyalaya (A Central University), Sagar, M.P., 470003, India.
| | - Nikunj Kumar
- Computational Chemistry Center, Department of Chemistry, Indian Institute of Technology, Roorkee-247667.
| | - Narendra Singh
- Department of Chemistry, Indian Institute of Technology of Kanpur, U.P. 208016, India
| | - Puneet Gupta
- Computational Chemistry Center, Department of Chemistry, Indian Institute of Technology, Roorkee-247667.
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr.HarisinghGourVishwavidyalaya (A Central University), Sagar, M.P., 470003, India.
| |
Collapse
|
15
|
Boruah A, Roy A. Advances in hybrid peptide-based self-assembly systems and their applications. Biomater Sci 2022; 10:4694-4723. [PMID: 35899853 DOI: 10.1039/d2bm00775d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly of peptides demonstrates a great potential for designing highly ordered, finely tailored supramolecular arrangements enriched with high specificity, improved efficacy and biological activity. Along with natural peptides, hybrid peptide systems composed of natural and chemically diverse unnatural amino acids have been used in various fields, including drug delivery, wound healing, potent inhibition of diseases, and prevention of biomaterial related diseases to name a few. In this review, we provide a brief outline of various methods that have been utilized for obtaining fascinating structures that create an avenue to reproduce a range of functions resulting from these folds. An overview of different self-assembled structures as well as their applications will also be provided. We believe that this review is very relevant to the current scenario and will cover conformations of hybrid peptides and resulting self-assemblies from the late 20th century through 2022. This review aims to be a comprehensive and reliable account of the hybrid peptide-based self-assembly owing to its enormous influence in understanding and mimicking biological processes.
Collapse
Affiliation(s)
- Alpana Boruah
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Arup Roy
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
16
|
Tripathi SK, Kesharwani K, Kaul G, Akhir A, Saxena D, Singh R, Mishra NK, Pandey A, Chopra S, Joshi KB. Amyloid-β Inspired Short Peptide Amphiphile Facilitates Synthesis of Silver Nanoparticles as Potential Antibacterial Agents. ChemMedChem 2022; 17:e202200251. [PMID: 35684988 DOI: 10.1002/cmdc.202200251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Indexed: 11/11/2022]
Abstract
An amyloid-β inspired biocompatible short peptide amphiphile (sPA) molecule was used for controlled and targeted delivery of bioactive silver nanoparticles via transforming sPA nanostructures. Such sPA-AgNPs hybrid structures can be further used to develop antibacterial materials to combat emerging bacterial resistance. Due to the excellent antibacterial activity of silver, the growth of clinically relevant bacteria was inhibited in the presence of AgNPs-sPA hybrids. Bacterial tests demonstrated that the high biocompatibility and low cytotoxicity of the designed sPA allow it to work as a model drug delivery agent. It therefore shows great potential in locally addressing bacterial infections. The results of our study suggest that these nanodevices have the potential to trap and then engage in the facile delivery of their chemical payload at the target site, thereby working as potential delivery materials. This system has potential therapeutic value for the treatment of microbiota triggered progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Satyendra K Tripathi
- Department of Chemistry, School of Chemical Science and Technology, Dr.Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr.Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Grace Kaul
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abdul Akhir
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India
| | - Deepanshi Saxena
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr.Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Narendra K Mishra
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Archna Pandey
- Department of Chemistry, School of Chemical Science and Technology, Dr.Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khashti B Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr.Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| |
Collapse
|
17
|
Tanaka T, Kuroiwa K. Supramolecular Hybrids from Cyanometallate Complexes and Diblock Copolypeptide Amphiphiles in Water. Molecules 2022; 27:3262. [PMID: 35630738 PMCID: PMC9143414 DOI: 10.3390/molecules27103262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
The self-assembly of discrete cyanometallates has attracted significant interest due to the potential of these materials to undergo soft metallophilic interactions as well as their optical properties. Diblock copolypeptide amphiphiles have also been investigated concerning their capacity for self-assembly into morphologies such as nanostructures. The present work combined these two concepts by examining supramolecular hybrids comprising cyanometallates with diblock copolypeptide amphiphiles in aqueous solutions. Discrete cyanometallates such as [Au(CN)2]-, [Ag(CN)2]-, and [Pt(CN)4]2- dispersed at the molecular level in water cannot interact with each other at low concentrations. However, the results of this work demonstrate that the addition of diblock copolypeptide amphiphiles such as poly-(L-lysine)-block-(L-cysteine) (Lysm-b-Cysn) to solutions of these complexes induces the supramolecular assembly of the discrete cyanometallates, resulting in photoluminescence originating from multinuclear complexes with metal-metal interactions. Electron microscopy images confirmed the formation of nanostructures of several hundred nanometers in size that grew to form advanced nanoarchitectures, including those resembling the original nanostructures. This concept of combining diblock copolypeptide amphiphiles with discrete cyanometallates allows the design of flexible and functional supramolecular hybrid systems in water.
Collapse
Affiliation(s)
| | - Keita Kuroiwa
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan;
| |
Collapse
|
18
|
Kesharwani K, Singh R, Khan MJ, Vinayak V, Joshi KB. Hydrophobized Short Peptide Amphiphile Functionalized Gold Nanoparticles as Antibacterial Biomaterials. ChemistrySelect 2021. [DOI: 10.1002/slct.202102204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Khushboo Kesharwani
- Department of Chemistry School of Chemical Science and Technology Dr.Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP 470003 India
| | - Ramesh Singh
- Department of Chemistry School of Chemical Science and Technology Dr.Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP 470003 India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and metabolism lab (DNM) School of Applied Sciences Department of Criminology and Forensic Science Dr. Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP
| | - Vandana Vinayak
- Diatom Nanoengineering and metabolism lab (DNM) School of Applied Sciences Department of Criminology and Forensic Science Dr. Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP
| | - Khashti Ballabh Joshi
- Department of Chemistry School of Chemical Science and Technology Dr.Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP 470003 India
| |
Collapse
|
19
|
Barbee MH, Wright ZM, Allen BP, Taylor HF, Patteson EF, Knight AS. Protein-Mimetic Self-Assembly with Synthetic Macromolecules. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02826] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meredith H. Barbee
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zoe M. Wright
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin P. Allen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hailey F. Taylor
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily F. Patteson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S. Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
20
|
Singh N, Singh R, Sharma S, Kesharwani K, Joshi KB, Verma S. Transition-metal ion-mediated morphological transformation of pyridine-based peptide nanostructures. NEW J CHEM 2021. [DOI: 10.1039/d0nj04260a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pyridine-mediated constitutionally isomeric artificial metallopeptides possess remarkable advantages over the natural counterparts mainly due to their tailor-made chemical structure.
Collapse
Affiliation(s)
- Narendra Singh
- Department of chemistry
- Indian Institute of Technology
- Kanpur-208016
- India
| | - Ramesh Singh
- Department of Chemistry
- School of Chemical Science and Technology
- Dr HarisinghGour Central University
- Sagar
- India
| | - Swati Sharma
- Department of chemistry
- Indian Institute of Technology
- Kanpur-208016
- India
| | - Khushboo Kesharwani
- Department of Chemistry
- School of Chemical Science and Technology
- Dr HarisinghGour Central University
- Sagar
- India
| | - Khashti Ballabh Joshi
- Department of Chemistry
- School of Chemical Science and Technology
- Dr HarisinghGour Central University
- Sagar
- India
| | - Sandeep Verma
- Department of chemistry
- Indian Institute of Technology
- Kanpur-208016
- India
| |
Collapse
|
21
|
Singh N, Singh R, Shukla M, Kaul G, Chopra S, Joshi KB, Verma S. Peptide Nanostructure-Mediated Antibiotic Delivery by Exploiting H 2S-Rich Environment in Clinically Relevant Bacterial Cultures. ACS Infect Dis 2020; 6:2441-2450. [PMID: 32786296 DOI: 10.1021/acsinfecdis.0c00227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stimuli-responsive self-destructing soft structures serve as versatile hosts for the encapsulation of guest molecules. A new paradigm for H2S-responsive structures, based on a modified tripeptide construct, is presented along with microscopy evidence of its time-dependent rupture. As a medicinally interesting application, we employed these commercial antibiotic-loaded soft structures for successful drug release and inhibition of clinically relevant, drug-susceptible, and methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Narendra Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Ramesh Singh
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Manjulika Shukla
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, Uttar Pradesh226001, India
| | - Grace Kaul
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, Uttar Pradesh226001, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, Uttar Pradesh226001, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
22
|
Singh N, Singh R, Joshi KB, Verma S. Constitutionally Isomeric Aromatic Tripeptides: Self-Assembly and Metal-Ion-Modulated Transformations. Chempluschem 2020; 85:2001-2009. [PMID: 32876402 DOI: 10.1002/cplu.202000464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Indexed: 12/21/2022]
Abstract
Self-assembling peptides based on aromatic amino acids can adopt diverse nanostructures which primarily depend on their molecular structures. Therefore, to understand the nature of self-assembly on the molecular level we rationally designed two constitutional isomers of short aromatic peptides. The first isomer consists of a tyrosine moiety at the N-terminus and the second isomer consists of a tyrosine moiety at the C-terminus of the FF peptide, a core recognition motif of Amyloid β peptides. Therefore, it can be considered that both the designed tripeptides are the analogues of the FFF peptide with only atomic(-H) level replacement by -OH functional group on the first and last phenyl ring, respectively. The first isomer self-assembled into 2D porous nanosheets ("Nanowebs"), however the second isomers produced toroidal shapes with central spheres ("Nano-Saturn" like assemblies). Interestingly, the presence of the transition-metal ions (copper, zinc and iron) triggered the self-assembly of both the peptides into fibrous circular discs, nanomats and nanoplates like assembly.
Collapse
Affiliation(s)
- Narendra Singh
- Department of Chemistry, Indian Institute of Technology-Kanpur, Kanpur, 208016, India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology-Kanpur, Kanpur, 208016, India
| |
Collapse
|
23
|
Singh R, Khan MJ, Rane J, Gajbhiye A, Vinayak V, Joshi KB. Biofabrication of Diatom Surface by Tyrosine‐Metal Complexes:Smart Microcontainers to Inhibit Bacterial Growth. ChemistrySelect 2020. [DOI: 10.1002/slct.201904248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ramesh Singh
- Department of ChemistrySchool of Chemical Science and TechnologyDr. Harisingh Gour Central University Sagar MP 470003 India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Lab (DNM)School of Applied SciencesDr. Harisingh Gour Central University Sagar MP 470003 India
| | - Jagdish Rane
- Department of Pharmaceutical SciencesDr. Harisingh Gour Central University Sagar MP 470003 India
| | - Ashmita Gajbhiye
- Department of Pharmaceutical SciencesDr. Harisingh Gour Central University Sagar MP 470003 India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Lab (DNM)School of Applied SciencesDr. Harisingh Gour Central University Sagar MP 470003 India
| | - Khashti Ballabh Joshi
- Department of ChemistrySchool of Chemical Science and TechnologyDr. Harisingh Gour Central University Sagar MP 470003 India
| |
Collapse
|
24
|
Singh R, Mishra NK, Singh N, Rawal P, Gupta P, Joshi KB. Transition metal ions induced secondary structural transformation in a hydrophobized short peptide amphiphile. NEW J CHEM 2020. [DOI: 10.1039/d0nj01501f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal ions mediate the secondary structural transformation of hydrophobized sPA and can be applied to the design and development of stimuli-responsive nanomaterials.
Collapse
Affiliation(s)
- Ramesh Singh
- Department of Chemistry
- School of Chemical Science and Technology
- Dr Harisingh Gour Central University
- Sagar
- India
| | | | - Narendra Singh
- Department of Chemistry
- Indian Institute of Technology
- Kanpur
- India
| | - Parveen Rawal
- Department of Chemistry
- Indian Institute of Technology
- Roorkee 247667
- India
| | - Puneet Gupta
- Department of Chemistry
- Indian Institute of Technology
- Roorkee 247667
- India
| | - Khashti Ballabh Joshi
- Department of Chemistry
- School of Chemical Science and Technology
- Dr Harisingh Gour Central University
- Sagar
- India
| |
Collapse
|