1
|
Park J, Lee S, Jafter OF, Cheon J, Lungerich D. Electron beam-induced demetallation of Fe, Co, Ni, Cu, Zn, Pd, and Pt metalloporphyrins: insights in e-beam chemistry and metal cluster formations. Phys Chem Chem Phys 2024; 26:8051-8061. [PMID: 38314818 DOI: 10.1039/d3cp05848d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Electron beams are versatile tools for nanoscale fabrication processes, however, the underlying e-beam chemistry remains in its infancy. Through operando transmission electron microscopy investigations, we elucidate a redox-driven cargo release of individual metal atoms triggered by electron beams. The chosen organic delivery molecule, tetraphenylporphyrin (TPP), proves highly versatile, forming complexes with nearly all metals from the periodic table and being easily processed in solution. A comprehensive cinematographic analysis of the dynamics of single metal atoms confirms the nearly instantaneous ejection of complexed metal atoms under an 80 kV electron beam, underscoring the system's broad versatility. Providing mechanistic insights, we employ density functional theory to support the proposed reductive demetallation pathway facilitated by secondary electrons, contributing novel perspectives to electron beam-mediated chemical reaction mechanisms. Lastly, our findings demonstrate that all seven metals investigated form nanoclusters once ejected from TPP, highlighting the method's potential for studying and developing sustainable single-atom and nanocluster catalysts.
Collapse
Affiliation(s)
- Jongseong Park
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| | - Sol Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Orein Francis Jafter
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Dominik Lungerich
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
2
|
Sakakibara M, Nada H, Nakamuro T, Nakamura E. Cinematographic Recording of a Metastable Floating Island in Two- and Three-Dimensional Crystal Growth. ACS CENTRAL SCIENCE 2022; 8:1704-1710. [PMID: 36589889 PMCID: PMC9801501 DOI: 10.1021/acscentsci.2c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 06/17/2023]
Abstract
Many chemical reactions go through a cascade of events in which a series of metastable intermediates appear, and crystal nucleation is no exception. Although the consensus on the energetics of nucleation suggests the formation of metastable states preceding the crystal growth, little experimental evidence has been reported for their dynamics at an atomistic level. Operando imaging of two-dimensional nucleation on a defect-free NaCl nanocrystal in carbon nanotubes using a millisecond angstrom-resolution transmission electron microscope revealed the formation of a metastable "floating island" (FI) that migrates thermally on the (100) facet of NaCl as the first intermediate of epitaxy. The speed of the migration at 298 K is estimated to be larger than 0.3 nm ms-1. When a crystal tumbles in a container, a space repeatedly forms between the crystal and the container wall that hosts the FI. Tumbling changes the surface energy repeatedly and promotes the conversion of the FI into a new epitaxial layer. We anticipate that this surface catalysis mechanism found on the nanoscale also operates in bulk heterogeneous nucleation where agitation and attrition accelerate crystallization.
Collapse
Affiliation(s)
- Masaya Sakakibara
- Department
of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Nada
- Environmental
Management Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Takayuki Nakamuro
- Department
of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department
of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Chevalier OJGL, Nakamuro T, Sato W, Miyashita S, Chiba T, Kido J, Shang R, Nakamura E. Precision Synthesis and Atomistic Analysis of Deep-Blue Cubic Quantum Dots Made via Self-Organization. J Am Chem Soc 2022; 144:21146-21156. [DOI: 10.1021/jacs.2c08227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Takayuki Nakamuro
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Wataru Sato
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoru Miyashita
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Chiba
- Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Junji Kido
- Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Rui Shang
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Hanayama H, Yamada J, Tomotsuka I, Harano K, Nakamura E. Rim Binding of Cyclodextrins in Size-Sensitive Guest Recognition. J Am Chem Soc 2021; 143:5786-5792. [PMID: 33826331 DOI: 10.1021/jacs.1c00651] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyclodextrins (CDs) are doughnut-shaped cyclic oligosaccharides having a cavity and two rims. Inclusion binding in the cavity has long served as a classic model of molecular recognition, and rim binding has been neglected. We found that CDs recognize guests by size-sensitive binding using the two rims in addition to the cavity, using single-molecule electron microscopy and a library of graphitic cones as a solid-state substrate for complexation. For example, with its cavity and rim binding ability combined, γ-CD can recognize a guest of radius between 4 and 9 Å with a size-recognition precision of better than 1 Å, as shown by structural analysis of thousands of individual specimens and statistical analysis of the data thereof. A 2.5 ms resolution electron microscopic video provided direct evidence of the process of size recognition. The data suggest the occurrence of the rim binding mode for guests larger than the size of the CD cavity and illustrate a unique application of dynamic molecular electron microscopy for deciphering the spatiotemporal details of supramolecular events.
Collapse
Affiliation(s)
- Hiroki Hanayama
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junya Yamada
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Issei Tomotsuka
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Nakamuro T, Sakakibara M, Nada H, Harano K, Nakamura E. Capturing the Moment of Emergence of Crystal Nucleus from Disorder. J Am Chem Soc 2021; 143:1763-1767. [PMID: 33475359 DOI: 10.1021/jacs.0c12100] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Crystallization is the process of atoms or molecules forming an organized solid via nucleation and growth. Being intrinsically stochastic, the research at an atomistic level has been a huge experimental challenge. We report herein in situ detection of a crystal nucleus forming during nucleation/growth of a NaCl nanocrystal, as video recorded in the interior of a vibrating conical carbon nanotube at 20-40 ms frame-1 with localization precision of <0.1 nm. We saw NaCl units assembled to form a cluster fluctuating between featureless and semiordered states, which suddenly formed a crystal. Subsequent crystal growth at 298 K and shrinkage at 473 K took place also in a stochastic manner. Productive contributions of the graphitic surface and its mechanical vibration have been experimentally indicated.
Collapse
Affiliation(s)
- Takayuki Nakamuro
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaya Sakakibara
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Nada
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|