1
|
Nagaraju M, Ramulu B, Arbaz SJ, Shankar EG, Kiran AS, Yu JS. Rational Construction of Bi 2CuO 12Se 4 and VGCFs@Fe 2O 3 Composite Electrodes for High-Performance Semi-Solid-State Asymmetric Supercapacitors. SMALL METHODS 2024:e2400149. [PMID: 38881177 DOI: 10.1002/smtd.202400149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/25/2024] [Indexed: 06/18/2024]
Abstract
Recently, supercapacitors (SCs) are extensively explored as effective energy storage devices. Specifically, asymmetric SCs are being developed to enhance energy density using suitable materials with favorable nanostructures. This study describes the construction of a bismuth copper selenite (BCS-200) working electrode with an ultrathin nanosheet (UTNS) architecture. This morphology is achieved using a low-cost electrodeposition (ED) method, followed by annealing. The impact of ED time on the development of morphology is studied by synthesizing comparative electrodes simultaneously. The optimized BCS-200 electrode prepared with a deposition time of 200 s shows higher specific capacity/capacitance (Cs/Csc) values of 330.9 mAh g-1/2206.6 F g-1 than the other synthesized electrodes (BCS-100, BCS-150, BCS-250, and BCS-300). Besides, a vapor-grown carbon fiber (VGCF)-added Fe2O3 composite coated on nickel foam (NF) is developed as a negative electrode. The VGCFs@Fe2O3/NF electrode exhibits the (Cs/Csc) values of 183.5 mAh g-1/734.4 F g-1, which is associated with ultra-high cycling stability. In addition, the fabricated BCS-200 and VGCFs@Fe2O3/NF electrodes are combined to construct a wearable semi-solid-state asymmetric SC (SSASC) with an energy density (Ed) of 20.5 Wh kg-1 and a cycling stability of 91.7% over 40000 charge/discharge cycles. Furthermore, the real-time applicability of the SSASC is verified by powering it in practical applications.
Collapse
Affiliation(s)
- Manchi Nagaraju
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Bhimanaboina Ramulu
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Shaik Junied Arbaz
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Edugulla Girija Shankar
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Ampasala Surya Kiran
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jae Su Yu
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| |
Collapse
|
2
|
Rabani I, Lee JW, Lim T, Truong HB, Nisar S, Afzal S, Seo YS. Construction of a uniform zeolitic imidazole framework (ZIF-8) nanocrystal through a wet chemical route towards supercapacitor application. RSC Adv 2024; 14:118-130. [PMID: 38173577 PMCID: PMC10758760 DOI: 10.1039/d3ra06941a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/05/2023] [Indexed: 01/05/2024] Open
Abstract
Exploring larger surface area electrode materials is crucial for the development of an efficient supercapacitors (SCs) with superior electrochemical performance. Herein, a cost-effective strategy was adopted to synthesize a series of ZIF8 nanocrystals, and their size effect as a function of surface area was also examined. The resultant ZIF8-4 nanocrystal exhibits a uniform hexagonal structure with a large surface area (2800 m2 g-1) and nanometre size while maintaining a yield as high as 78%. The SCs performance was explored by employing different aqueous electrolytes (0.5 M H2SO4 and 1 M KOH) in a three-electrode set-up. The SC performance using a basic electrolyte (1 M KOH) was superior owing to the high ionic mobility of K+. The optimized ZIF8-4 nanocrystal electrode showed a faradaic reaction with a highest capacitance of 1420 F g-1 at 1 A g-1 of current density compared to other as-prepared electrodes in the three-electrode assembly. In addition, the resultant ZIF8-4 was embedded into a symmetric supercapacitor (SSC), and the device offered 350 F g-1 of capacitance with a maximum energy and power density of 43.7 W h kg-1 and 900 W kg-1 at 1 A g-1 of current density, respectively. To determine the practical viewpoint and real-world applications of the ZIF8-4 SSC device, 7000 GCD cycles were performed at 10 A g-1 of current density. Significantly, the device exhibited a cycling stability around 90% compared to the initial capacitance. Therefore, these findings provide a pathway for constructing large surface area ZIF8-based electrodes for high-value-added energy storage applications, particularly supercapacitors.
Collapse
Affiliation(s)
- Iqra Rabani
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 Republic of Korea
| | - Je-Won Lee
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 Republic of Korea
| | - Taeyoon Lim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 Republic of Korea
| | - Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University Ho Chi Minh City Viet Nam
- Faculty of Applied Technology, School of Engineering and Technology, Van Lang University Ho Chi Minh City Viet Nam
| | - Sobia Nisar
- Department of Electronic Engineering, Sejong University Seoul 05006 Republic of Korea
| | - Sitara Afzal
- Mixed Reality and Interaction Laboratory, Sejong University Seoul 05006 Republic of Korea
| | - Young-Soo Seo
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 Republic of Korea
| |
Collapse
|
3
|
Huang N, Sun Y, Liu S, Wang X, Zhang J, Guo L, Bi J, Sun X. Microwave-Assisted Rational Designed CNT-Mn 3 O 4 /CoWO 4 Hybrid Nanocomposites for High Performance Battery-Supercapacitor Hybrid Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300696. [PMID: 37165607 DOI: 10.1002/smll.202300696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/21/2023] [Indexed: 05/12/2023]
Abstract
Extensive research interest in hybrid battery-supercapacitor (BSH) devices have led to the development of cathode materials with excellent comprehensive electrochemical properties. In this work, carbon nanotube (CNT)-Mn3 O4 /CoWO4 triple-segment hybrid electrode is synthesized by using a two-step microwave-assisted hydrothermal route. Systematic physical characterization revealed that, with the assistance of microwave, granular Mn3 O4 and spheroid-like CoWO4 with preferred orientation, and oxygen vacancies are stacked or arranged on CNTs skeletons to construct a rational designed hybrid nanocomposite with abundant heterointerfaces and interfacial chemical bonds. Electrochemical evaluations show that the synergistic cooperation in CNT-Mn3 O4 /CoWO4 resulted in an ultra-high specific capacity (1907.5 C g-1 /529.8 mA h g-1 at 1 A g-1 ), a wide operating voltage window (1.15 V), the satisfactory rate capability (capacity maintained at 1016.5 C g-1 /282.3 mA h g-1 at 15 A g-1 ), and excellent cycling stability (117.2% initial capacity retention after 13000 cycles at 15 A g-1 ). In addition, the assembled CNT-Mn3 O4 /CoWO4 //N doped porous carbon (NC) BSH device delivered a stable working voltage of 2.05 V and superior energy density of 67.5 Wh kg-1 at power density of 1025 W kg-1 , as well as excellent stability (92.2% capacity retained at 5 A g-1 for 12600 cycles). This work provides a new and feasible tactic to develop high-performance transition metal oxide-based cathodes for advanced BSH devices.
Collapse
Affiliation(s)
- Naibao Huang
- College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yin Sun
- College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Sen Liu
- College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xinyu Wang
- College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Junjie Zhang
- College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Likui Guo
- College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Jiapeng Bi
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiannian Sun
- College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China
| |
Collapse
|
4
|
Tan L, He R, Shi A, Xue L, Wang Y, Li H, Song X. Heterostructured CoFeP/CoP as an Electrocatalyst for Hydrogen Evolution in Alkaline Media. Inorg Chem 2023. [PMID: 37307399 DOI: 10.1021/acs.inorgchem.3c01186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing highly efficient and persistent transition-metal-phosphide (TMP)-based electrocatalysts is critical for the hydrogen evolution reaction (HER) via water splitting in alkaline media. Herein, we constructed a unique heterostructured CoFeP/CoP grown on a nickle foam (NF) via hydrothermal and dipping methods followed by phosphorization at different temperatures for HER. The experimental results exhibit that the HER activity of CoFeP/CoP-400 is accelerated after the construction of heterostructures. The unique heterostructure provides plentiful active sites and a large surface area, which are beneficial for HER in 1.0 M KOH. CoFeP/CoP-400 displays a small overpotential of 78 mV at a current density of 10 mA cm-2 and a smaller Tafel slope of 55.5 mV dec-1. Moreover, CoFeP/CoP-400 shows excellent stability with a long-term operating time of 12 h. This work provides an effective method for the construction of TMPs with heterostructures for promoting energy conversion.
Collapse
Affiliation(s)
- Lichao Tan
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo 315100, P. R. China
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Ranran He
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Anran Shi
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Linjiang Xue
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Yimin Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Hongpeng Li
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P. R. China
| | - Xiumei Song
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo 315100, P. R. China
| |
Collapse
|
5
|
Design of an Internal/External Bicontinuous Conductive Network for High-Performance Asymmetrical Supercapacitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238168. [PMID: 36500261 PMCID: PMC9736552 DOI: 10.3390/molecules27238168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
High-energy density supercapacitors have attracted extensive attention due to their electrode structure design. A synergistic effect related to core-shell structure can improve the energy storage capacity and power density of electrode materials. The Ni-foam (NF) substrate coupled with polypyrrole (PPy) conductive coating can serve as an internal/external bicontinuous conductive network. In this work, the distinctive PPy@FeNi2S4@NF and PPy@NiCo2S4@NF materials were prepared by a simple two-step hydrothermal synthesis with a subsequent in situ polymerization method. PPy@FeNi2S4@NF and PPy@NiCo2S4@NF could deliver ultrahigh specific capacitances of 3870.3 and 5771.4 F·g-1 at 1 A·g-1 and marvelous cycling capability performances of 81.39% and 93.02% after 5000 cycles. The asymmetric supercapacitors composed of the prepared materials provided a high-energy density of over 47.2 Wh·kg-1 at 699.9 W·kg-1 power density and 67.11 Wh·kg-1 at 800 W·kg-1 power density. Therefore, the self-assembled core-shell structure can effectively improve the electrochemical performance and will have an effective service in advanced energy-storage devices.
Collapse
|
6
|
Wu CH, Wu YF, Lee PY, Yougbaré S, Lin LY. Ligand Incorporating Sequence-dependent ZIF67 Derivatives as Active Material of Supercapacitor: Competition between Ammonia Fluoride and 2-Methylimidazole. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43180-43194. [PMID: 36103342 DOI: 10.1021/acsami.2c09787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The zeolitic imidazolate framework 67 (ZIF67) derivative is a potential active material of supercapacitors (SC), owing to high specific surface area and porosity and possible formation of cobalt compounds. A novel ZIF67 derivative is synthesized using a one-step solution process with cobalt precursor 2-methylimidazole (2-Melm) and ammonia fluoride in our previous work. Due to its facile synthesis and excellent electrocapacitive behavior, it is crucial to understand the competition between ammonia fluoride and 2-Melm on forming derivatives with cobalt ions and to create more efficient ZIF67 derivatives for charge storage. In this work, several ZIF67 derivatives are designed using a one-step solution process with 2-Melm and ammonia fluoride incorporated in different sequences. The reaction durations for a single ligand and two ligands are controlled. The largest capacity of 176.33 mAh/g corresponding to the specific capacitance of 1057.99 F/g is achieved for the ZIF67 derivative electrode prepared by reacting ammonia fluoride and a cobalt precursor for 0.5 h and then incorporating 2-Melm for another 23.5 h of reaction (NM0.5). This derivative composed of highly conductive CoF2, NiF2, Co(OH)F, and Ni(OH)F presents high specific surface area and porosity. The relevant SC presents a maximum energy density of 19.5 Wh/kg at 430 W/kg, a capacity retention of 92%, and Coulombic efficiency of 96% in 10000 cycles.
Collapse
Affiliation(s)
- Chung-Hsien Wu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yung-Fu Wu
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Pin-Yan Lee
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, 03 BP 7192, Ouagadougou 03, Burkina Faso
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
7
|
Cobalt-molybdenum selenide double-shelled hollow nanocages derived from metal-organic frameworks as high performance electrodes for hybrid supercapacitor. J Colloid Interface Sci 2022; 616:141-151. [DOI: 10.1016/j.jcis.2022.02.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 12/30/2022]
|
8
|
Bagwade P, Malavekar D, Ubale S, Bulakhe R, In I, Patil U, Lokhande C. Synthesis, characterization and supercapacitive application of nanocauliflower-like cobalt tungstate thin films by successive ionic layer adsorption and reaction (SILAR) method. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Naskar I, Deshagani S, Deepa M. Zinc cobaltite micro-stars with a zinc oxide nano-stubs overlayer based supercapacitor colors a polyaniline//tungsten oxide electrochromic device. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Duan H, Zhao Z, Lu J, Hu W, Zhang Y, Li S, Zhang M, Zhu R, Pang H. When Conductive MOFs Meet MnO 2: High Electrochemical Energy Storage Performance in an Aqueous Asymmetric Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33083-33090. [PMID: 34235934 DOI: 10.1021/acsami.1c08161] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Metal organic frameworks (MOFs) have been widely researched and applied in many fields. However, the poor electrical conductivity of many traditional MOFs greatly limits their application in electrochemistry, especially in energy storage. Benefited from the full charge delocalization in the atomical plane, conductive MOFs (c-MOFs) exhibit good electrochemical performance. Besides, unlike graphene, c-MOFs are provided with 1D cylindrical channels, which can facilitate the ion transport and enable high ion conductivity. Transition-metal oxides (TMOs) are promising materials with good electrochemical energy storage performance due to their excellent oxidation-reduction activity. When composited with TMOs, the c-MOFs can significantly improve the capacitance and rate performance. In this work, for the first time, we designed serial MnO2@Ni-HHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) nanoarrays with different lengths and explored how the lengths influence the electrochemical energy storage performance. By taking advantage of the high redox activity of MnO2 and the excellent electron and ion conductivity in Ni-HHTP, when assembled as the positive electrode material in an aqueous asymmetric supercapacitor, the device displays high energy density, outstanding rate performance, and superior cycle stability. We believe that the results of this work would provide a good prospect for developing other c-MOF composites as a potential class of electrode materials in energy storage and conversion.
Collapse
Affiliation(s)
- Huiyu Duan
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Zhimin Zhao
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Jiadan Lu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Wenhui Hu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Shasha Li
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Mengfei Zhang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Rongmei Zhu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| |
Collapse
|
11
|
Patil SJ, Chodankar NR, Huh YS, Han YK, Lee DW. Bottom-up Approach for Designing Cobalt Tungstate Nanospheres through Sulfur Amendment for High-Performance Hybrid Supercapacitors. CHEMSUSCHEM 2021; 14:1602-1611. [PMID: 33533140 DOI: 10.1002/cssc.202002968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Nanofabrication of heteroatom-doped metal oxides into a well-defined architecture via a "bottom-up" approach is crucial to overcome the boundaries of the metal oxides for energy storage systems. In the present work, this issue was addressed by developing sulfur-doped bimetallic cobalt tungstate (CoWO4 ) porous nanospheres for efficient hybrid supercapacitors via a single-step, ascendable bottom-up approach. The combined experimental and kinetics studies revealed enhanced electrical conductivity, porosity, and openness for ion migration after amendments of the CoWO4 via sulfur doping. As a result, the sulfur-doped CoWO4 nanospheres exhibited a specific capacity of 248.5 mA h g-1 with outstanding rate capability and cycling stability. The assembled hybrid supercapacitor cell with sulfur-doped CoWO4 nanospheres and activated carbon electrodes could be driven reversibly in a voltage of 1.6 V and exhibited a specific capacitance of 177.25 F g-1 calculated at 1.33 A g-1 with a specific energy of 63.41 Wh kg-1 at 1000 W kg-1 specific power. In addition, the hybrid supercapacitor delivered 94.85 % initial capacitance over 10000 charge-discharge cycles. The excellent supercapacitive performance of sulfur-doped CoWO4 nanospheres may be credited to the sulfur doping and bottom-up fabrication of the electrode materials.
Collapse
Affiliation(s)
- Swati J Patil
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Nilesh R Chodankar
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, 100, Inha-ro, Incheon, 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Dong Weon Lee
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Center for Next-generation Sensor Research and Development, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
12
|
Hui S, Ju T, Lin X, Li Y, Wang Y, Ying Z. Fabrication of NiCo 2S 4/carbon-filled nickel foam complex as an advanced binder-free electrode for supercapacitors. Dalton Trans 2020; 49:12345-12353. [PMID: 32845254 DOI: 10.1039/d0dt02160a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel strategy, composed of epoxy-resin filling, carbonization, and hydrothermal growing of NiCo2S4 nanorods, was developed to enlarge the surface area of nickel foam (NF) for loading electrochemically active materials and to successfully fabricate NiCo2S4/carbon-filled NF binder-free electrodes. Due to the certain electrical conductivity of the filled epoxy-resin-derived carbon and the enlarged loading surface area, the targeted electrode possesses outstanding electrochemical energy storage performance, with a maximum specific capacitance of 9.28 F cm-2 at a current density of 4 mA cm-2, more than 6 times the 1.46 F cm-2 of the NF-based electrode formed via directly growing NiCo2S4 on NF, and with a specific capacitance retention of about 60% after 2000 charge/discharge cycles. Our strategy provides a promising avenue for constructing a high-performance NF-based binder-free electrode and our resultant electrode presents great application potential in electrochemical energy storage.
Collapse
Affiliation(s)
- Shengjie Hui
- Department of Materials Science and Engineering, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | | | | | | | | | | |
Collapse
|