1
|
Wang LX, Wu XF, Jin XX, Li JY, Wang BW, Liu JY, Xiang J, Gao S. Slow magnetic relaxation in 8-coordinate Mn(II) compounds. Dalton Trans 2023; 52:14797-14806. [PMID: 37812439 DOI: 10.1039/d3dt02307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The design and synthesis of high-spin Mn(II)-based single-molecule magnets (SMMs) have not been well developed to a great extent, as compared with a large number of SMMs based on the other first row transition metal complexes. In light of our success in designing Fe(II), Co(II) and Fe(III)-based SMMs with a high coordination number of 8, it is of great interest to design Mn(II) analogues with such a strategy. In this contribution, four Mn(II) compounds, [MnII(Ln)2](ClO4)2 (1-4) were obtained from reactions of neutral tetradentate ligands, L1-L4, with hydrated MnII(ClO4)2 (L1 = 2,9-bis(carbomethoxy)-1,10-phenanthroline, L2 = 2,9-bis(carbomethoxy)-2,2'-dipyridine, L3 = N2,N9-dibutyl-1,10-phenanthroline-2,9-dicarboxamide, L4 = 6,6'-bis(2-(tert-butyl)-2H-tetrazol-5-yl)-2,2'-bipyridine). Their crystal structures have been determined by X-ray crystallography and it clearly shows that the Mn(II) centers in these compounds have an oversaturated coordination number of 8. Their magnetic properties have been investigated in detail; to our surprise, all of these Mn(II) compounds show interesting slow magnetic relaxation behaviors under an applied direct current field, although they have very small negative D values.
Collapse
Affiliation(s)
- Li-Xin Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Xiao-Fan Wu
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Xin-Xin Jin
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Jia-Yi Li
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Bing-Wu Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Ji-Yan Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| | - Jing Xiang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Song Gao
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
- School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Yang J, You ML, Liu S, Deng YF, Chang XY, Holmes SM, Zhang YZ. Cyanide-Bridged Rope-like Chains Based on Trigonal-Bipyramidal [Fe 2Cu 3] Subunits. Inorg Chem 2023; 62:17530-17536. [PMID: 37801447 DOI: 10.1021/acs.inorgchem.3c02986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Extending a selected cyanometalate block into a higher dimensional framework continues to present intriguing challenges in the fields of chemistry and material science. Here, we prepared two rope-like chain compounds of {[(Tp*Me)Fe(CN)3]2Cu2X2(L)}·sol (1, X = Cl, L = (MeCN)0.5(H2O/MeOH)0.5, sol = 2MeCN·1.5H2O; 2, X = Br, L = MeOH, sol = 2MeCN·0.75H2O; Tp*Me = tris(3, 4, 5-trimethylpyrazole)borate) in which the cyanide-bridged trigonal-bipyramidal [Fe2Cu3] subunits were linked with the adjacent ones via two vertex Cu(II) centers, providing a new cyanometallate chain archetype. Direct current magnetic study revealed the presence of ferromagnetic couplings between Fe(III) and Cu(II) ions and uniaxial anisotropy due to a favorable alignment of the anisotropic tricyanoiron(III) units. Moreover, compound 1 exhibits single-chain magnet behavior with an appreciable energy barrier of 72 K, while 2 behaves as a metamagnet, likely caused by the subtle changes in the interchain interactions.
Collapse
Affiliation(s)
- Jiong Yang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Mao-Lin You
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Shihao Liu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xiao-Yong Chang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Stephen M Holmes
- Department of Chemistry and Biochemistry and Centre for Nanoscience, University of Missouri-St. Louis, St. Louis, Missouri 63121, United States
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
3
|
Xu FX, Zhou YT, Zhang CC, Zhang XY, Wei HY, Wang XY. Syntheses, Structures, and Magnetic Properties of Three Cyano-Bridged Fe II-Mo III Single-Molecule Magnets. Inorg Chem 2023; 62:15465-15478. [PMID: 37699414 DOI: 10.1021/acs.inorgchem.3c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Three new cyano-bridged FeII-MoIII complexes assembled from the [MoIII(CN)7]4- unit, FeII ions, and three pentadentate N3O2 ligands, namely {[Fe2H3(dapab)2][Mo(CN)6]}n·2H2O·3.5MeCN (1), [Fe(H2dapb)(H2O)][Fe(Hdapb)(H2O)][Mo(CN)6]·4H2O·3MeCN (2), and [Fe(H2dapba)(H2O)]2[Mo(CN)7]·6H2O (3) (H2dapab = 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone), H2dapb = 2,6-diacetylpyridine bis(benzoylhydrazone), H2dapba = 2,6-diacetylpyridine bis(4-aminobenzoylhydrazone)), have been synthesized and characterized. Single-crystal structure analyses suggest that complex 1 contains a one-dimensional (1D) chain structure where two FeII ions are bridged by the in situ generated [MoIII(CN)6]3- unit through two trans-cyanide groups into trinuclear Fe2IIMoIII clusters that are further linked by the amino of the ligand into an infinite chain. Complexes 2 and 3 are cyano-bridged Fe2IIMoIII trinuclear clusters with two FeII ions connected by the [MoIII(CN)6]3- and [MoIII(CN)7]4- units, respectively. Direct current magnetic studies confirmed the ferromagnetic interactions between the cyano-bridged FeII and MoIII centers and significant easy-axis magnetic anisotropy for all three complexes. Furthermore, complexes 1-3 exhibit slow magnetic relaxation under a zero dc field, with relaxation barriers of 42.3, 21.6, and 14.4 K, respectively, making them the first examples of cyano-bridged FeII-MoIII single-molecule magnets.
Collapse
Affiliation(s)
- Fang-Xue Xu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Ting Zhou
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng-Cheng Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Yu Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hai-Yan Wei
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Sutter JP, Béreau V, Jubault V, Bretosh K, Pichon C, Duhayon C. Magnetic anisotropy of transition metal and lanthanide ions in pentagonal bipyramidal geometry. Chem Soc Rev 2022; 51:3280-3313. [PMID: 35353106 DOI: 10.1039/d2cs00028h] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magnetic anisotropy associated with a pentagonal bipyramidal (PBP) coordination sphere is examined on the basis of experimental and theoretical investigations. The origin and the characteristics of this anisotropy are discussed in relation to the electronic configuration of the metal ions. The effects of crystal field, structural distortion, and a second-coordination sphere on the observed anisotropies for transition meal and lanthanide ions are outlined. For the Ln derivatives, we focus on compounds showing SMM-like behavior (i.e. slow relaxation of their magnetization) in order to highlight the essential chemical and structural parameters for achieving strong axial anisotropy. The use of PBP complexes to impart controlled magnetic anisotropy in polynuclear species such as SMMs or SCMs is also addressed. This review of the magnetic anisotropies associated with a pentagonal bipyramidal coordination sphere for transition metal and lanthanide ions is intended to highlight some general trends that can guide chemists towards designing a compound with specific properties.
Collapse
Affiliation(s)
- Jean-Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Virginie Béreau
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France. .,Université de Toulouse, Institut Universitaire de Technologie Paul Sabatier-Département de Chimie, Av. Georges Pompidou, F-81104 Castres, France
| | - Valentin Jubault
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Kateryna Bretosh
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Céline Pichon
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
5
|
Kharwar AK, Mondal A, Konar S. Alignment of axial anisotropy of a mononuclear hexa-coordinated Co(ii) complex in a lattice shows improved single molecule magnetic behavior over a 2D coordination polymer having a similar ligand field. Dalton Trans 2021; 50:2832-2840. [DOI: 10.1039/d0dt04065g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The parallel orientation of the anisotropic axes minimizes the transverse component and slow down the relaxation process and results in a higher energy barrier in 0D complex as compared to 2D framework where anisotropic axes are randomly oriented.
Collapse
Affiliation(s)
- Ajit Kumar Kharwar
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhouri
- India
| | - Arpan Mondal
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhouri
- India
| | - Sanjit Konar
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhouri
- India
| |
Collapse
|