1
|
Wang SJ, Jiang LR, Wang H, Hu TY, Zhou L, Chen J. Halogen-Bond-Assisted NHC-Catalyzed (Dynamic) Kinetic Resolution for the Atroposelective Synthesis of Heterobiaryls. Org Lett 2024; 26:9079-9084. [PMID: 39405047 DOI: 10.1021/acs.orglett.4c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
We report a novel halogen-bond-assisted NHC-catalyzed (dynamic) kinetic resolution strategy for the synthesis of axially chiral heterobiaryls. A class of axially chiral quinolines are prepared efficiently in excellent enantioselectivities (≤98% ee) employing 3-5 mol % NHC catalyst. Mechanistic studies reveal the indispensability of 5-bromo-2-iodobenzaldehyde in this reaction, in which a pivotal halogen bonding interaction plays a crucial role in the process.
Collapse
Affiliation(s)
- Shao-Jie Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Li-Rong Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - He Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Tian-Yi Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
2
|
Chan KHA, O WY, Jiang JJ, Cui JF, Wong MK. Consecutive chirality transfer: efficient synthesis of chiral C,O-chelated BINOL/gold(iii) complexes for asymmetric catalysis and chiral resolution of disubstituted BINOLs. Chem Sci 2024:d4sc04221b. [PMID: 39323523 PMCID: PMC11420890 DOI: 10.1039/d4sc04221b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
A novel approach for efficient synthesis of chiral C,O-chelated BINOL/gold(iii) complexes by diastereomeric resolution using enantiopure BINOL as a chiral resolving agent was demonstrated. The BINOL/gold(iii) diastereomers with different solubility were separated by simple filtration, providing optically pure BINOL/gold(iii) complexes with up to >99 : 1 dr. By combining this with an efficient BINOL ligand dissociation process, a simple and column-free method for chiral resolution of racemic gold(iii) dichloride complexes on a gram scale was established, affording their enantiopure forms in good yields. Conversely, the resolved enantiopure gold(iii) dichloride complexes could serve as chiral resolving agents to resolve disubstituted BINOL derivatives, achieving both BINOLs and gold(iii) complexes in good to excellent yields (overall 77-96% and 76-95%, respectively) with a high optical purity of up to 99% ee. Through a consecutive chirality transfer process, the chiral information from an inexpensive chiral source was transferred to highly valuable gold(iii) complexes, followed by sterically bulky BINOL derivatives. This work would open a new synthetic strategy facilitating the development of structurally diverse chiral gold(iii) complexes and gold(iii)-mediated chiral resolution of BINOL derivatives. In addition, this new class of C,O-chelated BINOL/gold(iii) complexes achieved asymmetric carboalkoxylation of ortho-alkynylbenzaldehydes with an excellent enantioselectivity of up to 99% ee.
Collapse
Affiliation(s)
- Kwok-Heung Aries Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Wa-Yi O
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Jia-Jun Jiang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Jian-Fang Cui
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Man-Kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| |
Collapse
|
3
|
Zhu XQ, Yang HY, Ye LW. Chiral Brønsted Acid-Catalyzed Asymmetric Reaction via Vinylidene Ortho-Quinone Methides. Chemistry 2024; 30:e202402247. [PMID: 38923595 DOI: 10.1002/chem.202402247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Vinylidene ortho-quinone methides (VQMs) have been proven to be versatile and crucial intermediates in the catalytic asymmetric reaction in last decade, and thus have drawn considerable concentrations on account of the practical application in the construction of enantiomerically pure functional organic molecules. However, in comparison to the well established chiral Brønsted base-catalyzed asymmetric reaction via VQMs, chiral Brønsted acid-catalyzed reaction is rarely studied and there is no systematic summary to date. In this review, we summarize the recent advances in the chiral Brønsted acid-catalyzed asymmetric reaction via VQMs according to three types of reactions: a) intermolecular asymmetric nucleophilic addition to VQMs; b) intermolecular asymmetric cycloaddition of VQMs; c) intramolecular asymmetric cyclization of VQMs. Finally, we put forward the remained challenges and opportunities for potential breakthroughs in this area.
Collapse
Affiliation(s)
- Xin-Qi Zhu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Hai-Yu Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Long-Wu Ye
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
4
|
Liu ZL, Wang YX, Yang ZQ, Yang YH, Liu YP, Hao WJ, Jiang B. Construction of central and axial chirality via Pd(II)/Bim-catalyzed asymmetric dearomative Michael reaction of polycyclic tropones. Chem Commun (Camb) 2024; 60:8908-8911. [PMID: 39091214 DOI: 10.1039/d4cc03166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
A highly enantioselective Pd/Bim-catalyzed dearomative Michael reaction applying polycyclic tropones as non-benzenoid aromatic Michael acceptors and arylboronic acids as aryl pronucleophiles has been developed. The bridged biaryls bearing central and axial chirality, including pentacyclic cyclohepta[b]indoles and 6,7-dihydrodibenzo[a,c][7]annulen-5-ones, are generally generated in good to high yields and excellent enantioselectivities and can be readily transformed into useful derivatives.
Collapse
Affiliation(s)
- Zi-Li Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Yu-Xin Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Zi-Qi Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Yu-Heng Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Yin-Ping Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
5
|
Naghim A, Rodriguez J, Chuzel O, Chouraqui G, Bonne D. Enantioselective Synthesis of Heteroatom-Linked Non-Biaryl Atropisomers. Angew Chem Int Ed Engl 2024; 63:e202407767. [PMID: 38748462 DOI: 10.1002/anie.202407767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 06/16/2024]
Abstract
Atropisomers hold significant fascination, not only for their prevalence in natural compounds but also for their biological importance and wide-ranging applications as chiral materials, ligands, and organocatalysts. While biaryl and heterobiaryl atropisomers are commonly studied, the enantioselective synthesis of less abundant heteroatom-linked non-biaryl atropisomers presents a formidable challenge in modern organic synthesis. Unlike classical atropisomers, these molecules allow rotation around two bonds, resulting in low barriers to enantiomerization through concerted bond rotations. In recent years the discovery of new configurationally stable rare non-biaryl scaffolds such as aryl amines, aryl ethers and aryl sulfones as well as innovative methodologies to control their configuration have been disclosed in the literature and constitute the topic of this minireview.
Collapse
Affiliation(s)
- Abdelati Naghim
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Jean Rodriguez
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Olivier Chuzel
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Gaëlle Chouraqui
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Damien Bonne
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| |
Collapse
|
6
|
Ying M, Wang K, Yan W, Pu M, Lin L. Stable Axially Chiral Cyclohexylidenes from Catalytic Asymmetric Knoevenagel Condensation. Chemistry 2024; 30:e202401243. [PMID: 38711202 DOI: 10.1002/chem.202401243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Axially chiral cycloalkylidenes are interesting but less developed axially chiral molecules. Here, a bispidine-based chiral amine catalytic system was developed to promote efficiently the asymmetric Knoevenagel condensation of N-protected oxindoles and benzofuranones with 4-substituted cyclohexanones. A variety of alkylidenecycloalkanes with stable axial chirality were obtained in good yields and fairly good er (enantiomeric ratio). Based on the absolute configuration determination of product and DFT calculations, a possible mechanism of stereoselective induction was proposed.
Collapse
Affiliation(s)
- Meijia Ying
- Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Kaixuan Wang
- Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Wenjun Yan
- Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Maoping Pu
- Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| |
Collapse
|
7
|
Sun Y, Sun L, Zhang S, Zhang Z, Wang T. Synthesis of C-N Axially Chiral N-Arylbenzo[ g]indoles via a Central-to-Axial Chirality Conversion Strategy. Org Lett 2024. [PMID: 38780223 DOI: 10.1021/acs.orglett.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Gold-catalyzed cascade cyclization of diynes for the synthesis of previously unexplored C-N axially chiral N-arylbenzo[g]indoles was described. The transformation was achieved via a central-to-axial chirality conversion strategy. The chiral conversion exhibited high efficiency. Besides single C-N chiral axis, N-arylbenzo[g]indoles bearing both C-N and C-C chiral axes were also afforded. The title compound derived monophosphine ligand was prepared and was evaluated in Pd-catalyzed asymmetric allylic substitutions, showing excellent chiral induction ability.
Collapse
Affiliation(s)
- Yuan Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Lingzhi Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Shaoting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| |
Collapse
|
8
|
Li C, Cai SZ, Ye J, Fang X. Enantioselective Synthesis of Axially and Centrally Chiral Styrenes via Nickel-Catalyzed Desymmetric Hydrocyanation of Biaryl Dienes. Org Lett 2024; 26:3867-3871. [PMID: 38691097 DOI: 10.1021/acs.orglett.4c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Herein, a highly regio-, enantio-, and diastereoselective nickel-catalyzed desymmetric hydrocyanation of biaryl dienes for the simultaneous construction of axial and central chiralities is presented, which offers a convenient approach to a variety of tirenes containing the union of an axially chiral biaryl and a centrally α-chiral nitrile under mild conditions using a commercially available catalyst. The synthetic utility is highlighted by the development of a novel axially chiral phosphine ligand and biphenyl-based chiral diene ligand and their potential applications in the field of asymmetric catalytic reactions.
Collapse
Affiliation(s)
- Can Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Song-Zhou Cai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| |
Collapse
|
9
|
Niu X, Yuan M, Zhao R, Wang L, Liu Y, Zhao H, Li H, Yang X, Wang K. Fabrication strategies for chiral self-assembly surface. Mikrochim Acta 2024; 191:202. [PMID: 38492117 DOI: 10.1007/s00604-024-06278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Chiral self-assembly is the spontaneous organization of individual building blocks from chiral (bio)molecules to macroscopic objects into ordered superstructures. Chiral self-assembly is ubiquitous in nature, such as DNA and proteins, which formed the foundation of biological structures. In addition to chiral (bio) molecules, chiral ordered superstructures constructed by self-assembly have also attracted much attention. Chiral self-assembly usually refers to the process of forming chiral aggregates in an ordered arrangement under various non-covalent bonding such as H-bond, π-π interactions, van der Waals forces (dipole-dipole, electrostatic effects, etc.), and hydrophobic interactions. Chiral assembly involves the spontaneous process, which followed the minimum energy rule. It is essentially an intermolecular interaction force. Self-assembled chiral materials based on chiral recognition in electrochemistry, chiral catalysis, optical sensing, chiral separation, etc. have a broad application potential with the research development of chiral materials in recent years.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China.
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Luhua Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Hongfang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Xing Yang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China.
| |
Collapse
|
10
|
Zhang J, Wang K, Zhu C. Deracemization of Atropisomeric Biaryls Enabled by Copper Catalysis. JACS AU 2024; 4:502-511. [PMID: 38425940 PMCID: PMC10900502 DOI: 10.1021/jacsau.3c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
Atropisomeric biaryls have found crucial applications in versatile chiral catalysts as well as in ligands for transition metals. Herein, we have developed an efficient crystallization-induced deracemization (CID) method to access chiral biaryls from their racemates with a chiral ammonium salt under copper catalysis including BINOL, NOBIN, and BINAM derivatives. After being significantly accelerated by its bidentate diamine ligand, the copper catalyst exhibits high efficiency and selectivity in racemizing biaryl skeletons, and the cocrystal complex would be enantioselectively formed together with chiral ammonium salt, which on acid-quenching would directly deliver chiral biaryl without further chromatographic purification. This CID process is easily scalable, and the chiral ammonium salt was nicely recoverable. Ligand effect studies showed that bulky alkyl substitution was an indispensable element to ensure efficient racemization, which probably proceeds via a radical-cation intermediate and further allows axial rotation by forming a delocalized radical.
Collapse
Affiliation(s)
| | | | - Can Zhu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
11
|
Xu WL, Zhang RX, Wang H, Chen J, Zhou L. Helicoselective Synthesis of Indolohelicenoids through Organocatalytic Central-to-Helical Chirality Conversion. Angew Chem Int Ed Engl 2024; 63:e202318021. [PMID: 38196108 DOI: 10.1002/anie.202318021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
We report the helicoselective and convergent construction of indolohelicenoids with excellent efficiency and stereocontrol. This reaction proceeds through a chiral-phosphoric-acid-catalyzed enantioselective cycloaddition and eliminative aromatization sequence, which can be finely controlled by adjusting the reaction temperature. Mechanistic studies reveal that the chiral phosphoric acid cooperatively serves as both a bifunctional and Brønsted acid catalyst, enabling one-pot central-to-helical chirality conversion. Additionally, the optical properties of the synthesized indolohelicenoids were characterized to explore their potential applications in organic photoelectric materials.
Collapse
Affiliation(s)
- Wen-Lei Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Ru-Xia Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
12
|
Maclean I, Gallent E, Orozco O, Molina A, Rodríguez N, Adrio J, Carretero JC. Atroposelective Synthesis of Axially Chiral Naphthylpyrroles by a Catalytic Asymmetric 1,3-Dipolar Cycloaddition/Aromatization Sequence. Org Lett 2024; 26:922-927. [PMID: 38266629 PMCID: PMC10845160 DOI: 10.1021/acs.orglett.3c04261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
A straightforward methodology for the enantioselective preparation of axially chiral 2-naphthylpyrroles has been developed. This protocol is based on a CuI/Fesulphos-catalyzed highly enantioselective 1,3-dipolar cycloaddition of an azomethine ylide followed by pyrrolidine alkylation and pyrrolidine to pyrrole oxidation. The mild conditions employed in the DDQ/blue light-mediated aromatization process facilitate an effective central-to-axial chirality transfer affording the corresponding pyrroles with high atroposelectivity.
Collapse
Affiliation(s)
- Ian Maclean
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Enrique Gallent
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Oscar Orozco
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alba Molina
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nuria Rodríguez
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem) and Center for
Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Javier Adrio
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem) and Center for
Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan C. Carretero
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem) and Center for
Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
13
|
Gao X, Li C, Chen L, Li X. Asymmetric Synthesis of Axially Chiral Arylpyrazole via an Organocatalytic Arylation Reaction. Org Lett 2023; 25:7628-7632. [PMID: 37843395 DOI: 10.1021/acs.orglett.3c02694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Herein, a highly enantioselective arylation reaction of 3-aryl-5-aminopyrazoles and quinone derivatives was realized using a chiral phosphoric acid catalyst under mild conditions. The reaction has a broad scope with respect to both arylation reaction partners and hence offers rapid access to an array of axially chiral arylpyrazoles with pretty outcomes (up to 95% yield and 99% ee). Notably, the reaction is very efficient, as the catalyst loadings for the model reaction can be reduced to 1 mol % and the enantioselectivity is still maintained. Besides, the synthetic utility of the protocol was proven by a gram-scale reaction and the transformation of the product.
Collapse
Affiliation(s)
- Xi Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chengwen Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Li Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
14
|
Wang X, Luo Y, Zhao J, Luo S. CPA-catalyzed asymmetric domino thia-Michael/aldol reactions for simultaneous chiral center and axial chirality formation. Org Biomol Chem 2023; 21:6697-6701. [PMID: 37554057 DOI: 10.1039/d3ob01087b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A highly enantio- and diastereoselective domino thia-Michael/aldol reaction applying 5H-dibenzo[a,c][7]annulen-5-one as a Michael acceptor, catalyzed by a chiral phosphoric acid (CPA), has been developed. The bridged biaryl adduct contains multiple stereogenic centers in the bridging linkage as well as a thermodynamically controlled stereogenic axis. The energy difference between the two atropodiastereomers is about 9.1 kcal mol-1, which accounts for the observed excellent diastereoselectivity (>20 : 1).
Collapse
Affiliation(s)
- Xilong Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yu Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jiaji Zhao
- School of Medicine and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528400, China.
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
15
|
Zhu X, Wu H, Wang Y, Huang G, Wang F, Li X. Rhodium-catalyzed annulative approach to N-N axially chiral biaryls via C-H activation and dynamic kinetic transformation. Chem Sci 2023; 14:8564-8569. [PMID: 37592987 PMCID: PMC10430736 DOI: 10.1039/d3sc02800c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
N-N axially chiral biaryls represent a rarely explored class of atropisomeric compounds. We hereby report rhodium-catalyzed enantioselective [4 + 2] oxidative annulation of internal alkynes with benzamides bearing two classes of N-N directing groups. The coupling occurs under mild conditions via NH and CH annulation through the dynamic kinetic transformation of the directing group and is highly enantioselective with good functional tolerance. Computational studies of a coupling system at the DFT level has been conducted, and the alkyne insertion was identified as the enantio-determining as well as the turnover-limiting step.
Collapse
Affiliation(s)
- Xiaohan Zhu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Hongli Wu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Yishou Wang
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 266237 China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 266237 China
| |
Collapse
|
16
|
Cai WY, Ding QN, Zhou L, Chen J. Asymmetric Synthesis of Axially Chiral Molecules via Organocatalytic Cycloaddition and Cyclization Reactions. Molecules 2023; 28:4306. [PMID: 37298781 PMCID: PMC10254363 DOI: 10.3390/molecules28114306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Atropisomeric molecules are present in many natural products, biologically active compounds, chiral ligands and catalysts. Many elegant methodologies have been developed to access axially chiral molecules. Among them, organocatalytic cycloaddition and cyclization have attracted much attention because they have been widely used in the asymmetric synthesis of biaryl/heterobiaryls atropisomers via construction of carbo- and hetero-cycles. This strategy has undoubtedly become and will continue to be a hot topic in the field of asymmetric synthesis and catalysis. This review aims to highlight the recent advancements in this field of atropisomer synthesis by using different organocatalysts in cycloaddition and cyclization strategies. The construction of each atropisomer, its possible mechanism, the role of catalysts, and its potential applications are illustrated.
Collapse
Affiliation(s)
| | | | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China; (W.-Y.C.); (Q.-N.D.)
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China; (W.-Y.C.); (Q.-N.D.)
| |
Collapse
|
17
|
Wang LY, Miao J, Zhao Y, Yang BM. Chiral Acid-Catalyzed Atroposelective Indolization Enables Access to 1,1'-Indole-Pyrroles and Bisindoles Bearing a Chiral N-N Axis. Org Lett 2023; 25:1553-1557. [PMID: 36857743 DOI: 10.1021/acs.orglett.3c00237] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
We present herein a highly atroposelective indolization for the efficient synthesis of 1,1'-biheteroaryls bearing a chiral N-N axis. Under the cooperative catalysis of chiral phosphoric acid and InBr3, the reactions between 2,3-diketoesters and 1,3-dione-derived enamines resulted in a highly enantioselective construction of 1,1'-pyrrole-indoles with up to 92% yield, 94% enantiomeric excess (ee), or bisindoles in up to 92% ee. Derivatizations of these compounds to diverse functionalized N-N linked axially chiral biheteroaryls have also been demonstrated.
Collapse
Affiliation(s)
- Luo-Yu Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Jiapei Miao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
18
|
Yao L, Gashaw Woldegiorgis A, Huang S, Wang Y, Lin X. Palladium-Catalyzed Directed Atroposelective C-H Iodination to Synthesize Axial Chiral Biaryl N-Oxides via Enantioselective Desymmetrization Strategy. Chemistry 2023; 29:e202203051. [PMID: 36263903 DOI: 10.1002/chem.202203051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 12/04/2022]
Abstract
The discovery of enantioselective desymmetrization reactions to provide practical synthesis of enantio-enriched atropisomeric biaryls is a challenging topic in the field of asymmetric catalysis. Herein, we report a highly enantioselective desymmetrization reaction for the synthesis of axially chiral biaryl N-oxides by atroposelective C-H iodination by using Pd(II) coordinated by N-benzoyl-l-phenylalanine as a chiral catalyst at room temperature. A broad range of products were obtained in high yields (up to 99 %) with excellent enantioselectivities (up to 98 % ee). The products could be synthesized in gram scale, one of which was proved to be a powerful organocatalyst in asymmetric allylation reaction. Mechanistic evidence as well as DFT calculations point towards the factors that lead to high reactivity and excellent enantiocontrol in this reaction.
Collapse
Affiliation(s)
- Linxi Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Alemayehu Gashaw Woldegiorgis
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shaoying Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yongtao Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xufeng Lin
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
19
|
Zhang X, Liu YZ, Shao H, Ma X. Advances in Atroposelectively De Novo Synthesis of Axially Chiral Heterobiaryl Scaffolds. Molecules 2022; 27:8517. [PMID: 36500610 PMCID: PMC9739056 DOI: 10.3390/molecules27238517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
Axially chiral heterobiaryl frameworks are privileged structures in many natural products, pharmaceutically active molecules, and chiral ligands. Therefore, a variety of approaches for constructing these skeletons have been developed. Among them, de novo synthesis, due to its highly convergent and superior atom economy, serves as a promising strategy to access these challenging scaffolds including C-N, C-C, and N-N chiral axes. So far, several elegant reviews on the synthesis of axially chiral heterobiaryl skeletons have been disclosed, however, atroposelective construction of the heterobiaryl subunits by de novo synthesis was rarely covered. Herein, we summarized the recent advances in the catalytic asymmetric synthesis of the axially chiral heterobiaryl scaffold via de novo synthetic strategies. The related mechanism, scope, and applications were also included.
Collapse
Affiliation(s)
- Xiaoke Zhang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Central Laboratory, Chongqing University Fu Ling Hospital, Chongqing 408000, China
| | - Ya-Zhou Liu
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Huawu Shao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Ma
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
20
|
Bai G, Yang Y, Wang X, Wu J, Wang H, Ye X, Bao X. DBU Promoted Polysubstituted Arene Formation via a Michael Addition/Cyclization/Elimination Cascade Reaction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238167. [PMID: 36500260 PMCID: PMC9738611 DOI: 10.3390/molecules27238167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
The straightforward construction of polysubstituted arenes is essential in both synthetic chemistry and medicinal chemistry. Herein, we reported a DBU promoted Michael addition/cyclization/elimination cascade reaction between vinylogous malononitrile derivatives and chlorinated nitrostyrenes for the synthesis of polysubstituted arenes. The method features mild reaction conditions, wide substrate scope and high yield. Interestingly, preliminary study of the enantioselective version of this cascade was conducted to give chiral biaryl atropisomers with up to 40% ee through center-to-axial chirality transfer strategy.
Collapse
Affiliation(s)
- Guishun Bai
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yang Yang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingyue Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiamin Wu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang International Sci-Tech Cooperation Base for the Exploitation and Utilization of Nature Product, Hangzhou 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- Correspondence: (H.W.); (X.Y.); (X.B.)
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang International Sci-Tech Cooperation Base for the Exploitation and Utilization of Nature Product, Hangzhou 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- Correspondence: (H.W.); (X.Y.); (X.B.)
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang International Sci-Tech Cooperation Base for the Exploitation and Utilization of Nature Product, Hangzhou 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- Correspondence: (H.W.); (X.Y.); (X.B.)
| |
Collapse
|
21
|
Xiang Alvin Tan C, Li R, Zhang F, Dai L, Ullah N, Lu Y. Synthesis of Axially Chiral CF
3
‐Substituted 2‐Arylpyrroles by Sequential Phosphine‐Catalyzed Asymmetric [3+2] Annulation and Oxidative Central‐to‐Axial Chirality Transfer. Angew Chem Int Ed Engl 2022; 61:e202209494. [DOI: 10.1002/anie.202209494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Chuan Xiang Alvin Tan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Integrative Sciences & Engineering Programme (ISEP) National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| | - Rui Li
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou Fujian 350207 China
| | - Fuhao Zhang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Lei Dai
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Nisar Ullah
- Chemistry Department King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Yixin Lu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Integrative Sciences & Engineering Programme (ISEP) National University of Singapore 28 Medical Drive Singapore 117456 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou Fujian 350207 China
| |
Collapse
|
22
|
Li L, Xi J, Hong B, Gu Z. From Peripheral Stereogenic Center to Axial Chirality: Synthesis of 3‐Arylthiophene Atropisomers. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Lin Li
- Department of Chemistry Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 People's Republic of China
| | - Junwei Xi
- Department of Chemistry Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 People's Republic of China
| | - Biqiong Hong
- College of Materials and Chemical Engineering Minjiang University Fuzhou Fujian 350108 People's Republic of China
| | - Zhenhua Gu
- Department of Chemistry Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 People's Republic of China
- College of Materials and Chemical Engineering Minjiang University Fuzhou Fujian 350108 People's Republic of China
| |
Collapse
|
23
|
Gou B, Tang Y, Lin Y, Yu L, Jian Q, Sun H, Chen J, Zhou L. Modular Construction of Heterobiaryl Atropisomers and Axially Chiral Styrenes via All‐Carbon Tetrasubstituted VQMs. Angew Chem Int Ed Engl 2022; 61:e202208174. [DOI: 10.1002/anie.202208174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Bo‐Bo Gou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Yan‐Hong Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Qing‐Song Jian
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Huai‐Ri Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
24
|
Qin W, Liu Y, Yan H. Enantioselective Synthesis of Atropisomers via Vinylidene ortho-Quinone Methides (VQMs). Acc Chem Res 2022; 55:2780-2795. [PMID: 36121104 DOI: 10.1021/acs.accounts.2c00486] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Atropisomers, arising from conformational restriction, are inherently chiral due to the intersecting dissymmetric planes. Since there are numerous applications of enantiopure atropisomers in catalyst design, drug discovery, and material science, the asymmetric preparation of these highly prized molecules has become a flourishing field in synthetic chemistry. A number of catalysts, synthetic procedures, and novel concepts have been developed for the manufacture of the atropisomeric molecules. However, due to the intrinsic properties of different types of atropisomers featuring biaryl, hetero-biaryl, or non-biaryl architectures, only very few methods pass the rigorous inspection and are considered generally applicable. The development of a broadly applicable synthetic strategy for various atropisomers is a challenge. In this Account, we summarize our recent studies on the enantioselective synthesis of atropisomers using the vinylidene ortho-quinone methides (VQMs) as pluripotent intermediates.The most appealing features of VQMs are the disturbed aromaticity and axial chirality of the allene fragment. At the outset, the applications of VQMs in organic synthesis have been neglected due to their principal liabilities: ephemeral nature, extraordinary reactivity, and multireaction sites. The domestication of this transient intermediate was demonstrated by in situ catalytic asymmetric generation of VQMs, and the reactivity and selectivity were fully explored by judiciously modifying precursors and tuning catalytic systems. A variety of axially chiral heterocycles were achieved through five-, six-, seven- and nine-membered ring formation of VQM intermediates with different kinds of branched nucleophilic functional groups. The axially chiral C-N axis could be constructed from VQM intermediates via N-annulation or desymmetrization of preformed C-N scaffolds. We take advantage of the high electrophilicity of VQMs toward a series of sulfur and carbon based nucleophiles leading to atropisomeric vinyl arenes. Furthermore, chiral helical compounds were realized by cycloaddition or consecutive annulation of VQM intermediates. These achievements demonstrated that the VQMs could work as a nuclear parent for the collective synthesis of distinct and complex optically active atropisomers. Recently, we have realized the isolation and structural characterization of the elusive VQMs, which were questioned as putative intermediates for decades. The successful isolation of VQMs provided direct evidence for their existence and an unprecedented opportunity to directly investigate their reactivity. The good thermal stability and reserved reactivity of the isolated VQMs demonstrated their great potential as synthetic reagents and expanded the border of VQM chemistry.
Collapse
Affiliation(s)
- Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
25
|
Ghosh B, Harariya MS, Mukherjee S. Catalytic Enantioselective
de novo
Construction of Chiral Arenes through Desymmetrizing Oxidative [4+2]‐Cycloaddition. Angew Chem Int Ed Engl 2022; 61:e202204523. [DOI: 10.1002/anie.202204523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Biki Ghosh
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| | | | - Santanu Mukherjee
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| |
Collapse
|
26
|
Gou BB, Tang Y, Lin YH, Yu L, Jian QS, Sun HR, Chen J, Zhou L. Modular Construction of Heterobiaryl Atropisomers and Axially Chiral Styrenes via All‐Carbon Tetrasubstituted VQMs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo-Bo Gou
- Northwest University College of Chemistry & Materials Science CHINA
| | - Yue Tang
- Northwest University College of Chemistry & Materials Science CHINA
| | - Yan-Hong Lin
- Northwest University College of Chemistry & Materials Science CHINA
| | - Le Yu
- Northwest University College of Chemistry & Materials Science CHINA
| | - Qing-Song Jian
- Northwest University College of Chemistry & Materials Science CHINA
| | - Huai-Ri Sun
- Northwest University College of Chemistry & Materials Science CHINA
| | - Jie Chen
- Northwest University College of Chemistry & Materials Science CHINA
| | - Ling Zhou
- Northwest University College of Chemistry & Materials Science 1 Xuefu Ave., Chang’an District 710127 Xi'an CHINA
| |
Collapse
|
27
|
Ghosh B, Harariya MS, Mukherjee S. Catalytic Enantioselective de novo Construction of Chiral Arenes through Desymmetrizing Oxidative [4+2]‐Cycloaddition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biki Ghosh
- IISc: Indian Institute of Science Department of Organic Chemistry C V Raman Road 560012 Bangalore INDIA
| | - Mahesh Singh Harariya
- IISc: Indian Institute of Science Department of Organic Chemistry C V Raman Road 560012 Bangalore INDIA
| | - Santanu Mukherjee
- Indian Institute of Science Department of Organic Chemistry C V Raman Avenue 560012 Bangalore INDIA
| |
Collapse
|
28
|
Organocatalysis in Synthetic Heterocyclic Chemistry. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Yokose D, Nagashima Y, Kinoshita S, Nogami J, Tanaka K. Enantioselective Synthesis of Axially Chiral Styrene‐Carboxylic Esters by Rhodium‐Catalyzed Chelation‐Controlled [2+2+2] Cycloaddition. Angew Chem Int Ed Engl 2022; 61:e202202542. [DOI: 10.1002/anie.202202542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Daisuke Yokose
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Suzuka Kinoshita
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
30
|
Zhao Y, Liu N, Zhong S, Wen Z, Wang T. A Central-to-Axial Chirality Conversion Strategy for the Synthesis of C-N Axially Chiral N-Arylpyrroles. Org Lett 2022; 24:2842-2846. [PMID: 35412320 DOI: 10.1021/acs.orglett.2c00753] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present a central-to-axial chirality conversion strategy for the construction of C-N axially chiral N-arylpyrroles via a gold(I)-catalyzed 5-endo-dig cyclization/dehydration cascade from amino acid derivatives. The reaction exhibits high efficiency on the central-to-axial chirality conversion. Density functional theory calculations suggest that the stereospecificity during the central-to-axial chirality conversion lies in the stability of the conformations of the amino alcohol and the corresponding low barrier transition state.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, Shaanxi 710119, China
| | - Ningning Liu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, Shaanxi 710119, China
| | - Shiping Zhong
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, Shaanxi 710119, China
| | - Ziwei Wen
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, Shaanxi 710119, China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, Shaanxi 710119, China
| |
Collapse
|
31
|
Gao Y, Wang LY, Zhang T, Yang BM, Zhao Y. Atroposelective Synthesis of 1,1'-Bipyrroles Bearing a Chiral N-N Axis: Chiral Phosphoric Acid Catalysis with Lewis Acid Induced Enantiodivergence. Angew Chem Int Ed Engl 2022; 61:e202200371. [PMID: 35174596 DOI: 10.1002/anie.202200371] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 12/26/2022]
Abstract
We present herein a highly efficient atroposelective synthesis of axially chiral 1,1'-bipyrroles bearing an N-N linkage from simple hydrazine and 1,4-diones. Further product derivatizations led to axially chiral bifunctional compounds with high potential in asymmetric catalysis. For this chrial phosphoric acid (CPA)-catalyzed double Paal-Knorr reaction, an intriguing Fe(OTf)3 -induced enantiodivergence was also observed.
Collapse
Affiliation(s)
- Yaru Gao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Luo-Yu Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Tao Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| |
Collapse
|
32
|
Yokose D, Nagashima Y, Kinoshita S, Nogami J, Tanaka K. Enantioselective Synthesis of Axially Chiral Styrene‐Carboxylic Esters by Rhodium‐Catalyzed Chelation‐Controlled [2+2+2] Cycloaddition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daisuke Yokose
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Suzuka Kinoshita
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
33
|
Song X, Fan Y, Zhu Z, Ni Q. Chiral Phosphoric Acid-Catalyzed Asymmetric Arylation of Indolizines: Atroposelective Access to Axially Chiral 3-Arylindolizines. Org Lett 2022; 24:2315-2320. [PMID: 35297627 DOI: 10.1021/acs.orglett.2c00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report herein a highly straightforward strategy for the synthesis of a new axially chiral 3-arylindolizine scaffold via organocatalytic asymmetric arylation reactions of indolizines and p-quinone esters. Using the chiral phosphoric acid catalyst, a series of axially chiral 3-arylindolizines were accessed in good to excellent yields and atropo-enantioselectivities. This approach features a broad substrate scope, mild reaction conditions, good scalability, and facile derivatization. Moreover, preliminary investigations based on nonlinear effects and a thermal racemization study demonstrated the intrinsic pathway for the formation of axial chirality and its potential utility.
Collapse
Affiliation(s)
- Xiaoxiao Song
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Yanjun Fan
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Zhiming Zhu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Qijian Ni
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
34
|
Gao Y, Wang L, Zhang T, Yang B, Zhao Y. Atroposelective Synthesis of 1,1′‐Bipyrroles Bearing a Chiral N−N Axis: Chiral Phosphoric Acid Catalysis with Lewis Acid Induced Enantiodivergence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yaru Gao
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Luo‐Yu Wang
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Tao Zhang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Bin‐Miao Yang
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| |
Collapse
|
35
|
Organocatalytic cycloaddition of alkynylindoles with azonaphthalenes for atroposelective construction of indole-based biaryls. Nat Commun 2022; 13:632. [PMID: 35110529 PMCID: PMC8810779 DOI: 10.1038/s41467-022-28211-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
The axially chiral indole-aryl motifs are present in natural products and biologically active compounds as well as in chiral ligands. Atroposelective indole formation is an efficient method to construct indole-based biaryls. We report herein the result of a chiral phosphoric acid catalyzed asymmetric cycloaddition of 3-alkynylindoles with azonaphthalenes. A class of indole-based biaryls were prepared efficiently with excellent yields and enantioselectivities (up to 98% yield, 99% ee). Control experiment and DFT calculations illustrate a possible mechanism in which the reaction proceeds via a dearomatization of indole to generate an allene-iminium intermediate, followed by an intramolecular aza-Michael addition. This approach provides a convergent synthetic strategy for enantioselective construction of axially chiral heterobiaryl backbones. There is great interest in methods for catalytic enantioselective construction of axially chiral compounds found in natural products. Here, the authors develop a cycloaddition strategy for atroposelective construction of indole-based biaryls via chiral phosphoric acid-catalysed cycloaddition.
Collapse
|
36
|
Saito T, Shimizu Y, Araki Y, Ohgami Y, Kitazawa Y, Nishii Y. From Enantioenriched Donor‐Acceptor Cyclopropylcarbinols to Axially Chiral Arylnaphthalenes through Aryldihydronaphthalenes: Central‐to‐Axial Chirality Exchange. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Taichi Saito
- Department of Applied Chemistry, Faculty of Textile Science and Technology Shinshu University Tokida 3-15-1 Ueda Nagano 386–8567 Japan
| | - Yuka Shimizu
- Department of Applied Chemistry, Faculty of Textile Science and Technology Shinshu University Tokida 3-15-1 Ueda Nagano 386–8567 Japan
| | - Yusuke Araki
- Department of Applied Chemistry, Faculty of Textile Science and Technology Shinshu University Tokida 3-15-1 Ueda Nagano 386–8567 Japan
| | - Yoshino Ohgami
- Department of Applied Chemistry, Faculty of Textile Science and Technology Shinshu University Tokida 3-15-1 Ueda Nagano 386–8567 Japan
| | - Yu Kitazawa
- Department of Applied Chemistry, Faculty of Textile Science and Technology Shinshu University Tokida 3-15-1 Ueda Nagano 386–8567 Japan
| | - Yoshinori Nishii
- Department of Applied Chemistry, Faculty of Textile Science and Technology Shinshu University Tokida 3-15-1 Ueda Nagano 386–8567 Japan
| |
Collapse
|
37
|
Min XL, Zhang XL, Shen R, Zhang Q, He Y. Recent advances in the catalytic asymmetric construction of atropisomers by central-to-axial chirality transfer. Org Chem Front 2022. [DOI: 10.1039/d1qo01699g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We highlighted the recent advances in the field of central-to-axial chirality transfer for the synthesis of axially chiral molecules.
Collapse
Affiliation(s)
- Xiao-Long Min
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiu-Lian Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rui Shen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
38
|
Ma X, Feng A, Liu C, Zhang D. Mechanistic insight into construction of axially chiral biaryls via palladium/chiral norbornene cooperative catalysis: a DFT-based computational study. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01863a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations rationalize the enantioselectivity and clarify the reaction sequence of two aryl halides as well as the substantial role of the ortho-ester group in the aryl bromide.
Collapse
Affiliation(s)
- Xuexiang Ma
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Aili Feng
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chengbu Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
39
|
Shao YD, Feng JS, Han DD, Pan KH, Zhang L, Wang YF, Ma ZH, Wang PR, Yin M, Cheng DJ. Construction of axially chiral styrene-type allylamines via chiral phosphoric acid-catalyzed asymmetric reductive amination. Org Chem Front 2022. [DOI: 10.1039/d1qo01672e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The first enantioselective synthesis of axially chiral styrene-type allylamines through chiral phosphoric acid mediated atroposelective reductive amination of 1-enal substituted 2-naphthols is achieved.
Collapse
Affiliation(s)
- You-Dong Shao
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Jin-Shuo Feng
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Dan-Dan Han
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Kang-Hui Pan
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Ling Zhang
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Yi-Fan Wang
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Zhong-Hui Ma
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Pei-Ru Wang
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Mingjing Yin
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Dao-Juan Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
40
|
Yang H, Xu WL, Zeng XY, Chen J, Yu L, Zhou L. Hydrogen Bond Assisted Central-to-Spiro Chirality Transfer and Central-to-Axial Chirality Conversion: Asymmetric Synthesis of Spirocycles. Org Lett 2021; 23:9315-9320. [PMID: 34779205 DOI: 10.1021/acs.orglett.1c03710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The asymmetric construction of chiral spiroenones bearing both axial and spiro-central chirality has been established for the first time by a central-to-spiro chirality transfer and a central-to-axial chirality conversion from chiral 2,3-diarylbenzoindolines. Mechanistic studies indicate the hydrogen bonds play important roles in this process, providing an efficient strategy for enantioselective construction of spirocyclic backbones via simultaneously controlling spiro-central and axial chirality in one operation.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an 710127, P. R. China
| | - Wen-Lei Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an 710127, P. R. China
| | - Xin-Yi Zeng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an 710127, P. R. China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
41
|
Xu WL, Zhao WM, Zhang RX, Chen J, Zhou L. Organocatalytic cycloaddition-elimination cascade for atroposelective construction of heterobiaryls. Chem Sci 2021; 12:14920-14926. [PMID: 34820108 PMCID: PMC8597853 DOI: 10.1039/d1sc05161j] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
The first chiral phosphoric acid (CPA) catalyzed cycloaddition–elimination cascade reaction of 2-naphthol- and phenol-derived enecarbamates with azonaphthalenes has been established, providing a highly atroposelective route to an array of axially chiral aryl-C3-benzoindoles in excellent yields with excellent enantioselectivities. The success of this strategy derives from the stepwise process involving CPA-catalyzed asymmetric formal [3 + 2] cycloaddition and subsequent central-to-axial chirality conversion by elimination of a carbamate. In addition, the practicality of this reaction had been verified by varieties of transformations towards functionalized atropisomers. An organocatalytic asymmetric cycloaddition–elimination cascade reaction of aryl enecarbamates with azonaphthalenes has been developed to access axially chiral heterobiaryls in excellent yields and enantioselectivities.![]()
Collapse
Affiliation(s)
- Wen-Lei Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710102 P. R. China
| | - Wei-Ming Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710102 P. R. China
| | - Ru-Xia Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710102 P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710102 P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710102 P. R. China
| |
Collapse
|
42
|
Koshino S, Taniguchi T, Monde K, Kwon E, Hayashi Y. Enantiodivergent One-Pot Synthesis of Axially Chiral Biaryls Using Organocatalyst-Mediated Enantioselective Domino Reaction and Central-to-Axial Chirality Conversion. Chemistry 2021; 27:15786-15794. [PMID: 34524720 DOI: 10.1002/chem.202102797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Indexed: 01/03/2023]
Abstract
Enantiodivergent one-pot synthesis of biaryls was developed using a catalytic amount of a single chiral source. A domino organocatalyst-mediated enantioselective Michael reaction and aldol condensation provided centrally chiral dihydronaphthalenes with excellent enantioselectivity, from which an enantiodivergent chirality conversion from central-to-axial chirality was achieved. Both enantiomers of biaryls were obtained with excellent enantioselectivity. All transformations can be conducted in a single reaction vessel. A plausible reaction mechanism for the enantiodivergence is proposed.
Collapse
Affiliation(s)
- Seitaro Koshino
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Tohru Taniguchi
- Frontier Research Center of Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Kenji Monde
- Frontier Research Center of Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Yujiro Hayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
43
|
Liu ZS, Xie PP, Hua Y, Wu C, Ma Y, Chen J, Cheng HG, Hong X, Zhou Q. An axial-to-axial chirality transfer strategy for atroposelective construction of C–N axial chirality. Chem 2021. [DOI: 10.1016/j.chempr.2021.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Quinonero O, Lemaitre C, Jean M, Vanthuyne N, Roussel C, Bonne D, Constantieux T, Bressy C, Bugaut X, Rodriguez J. On the Enantioselective Phosphoric-Acid-Catalyzed Hantzsch Synthesis of Polyhydroquinolines. Org Lett 2021; 23:3394-3398. [PMID: 33904300 DOI: 10.1021/acs.orglett.1c00866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A reinvestigation of a chiral phosphoric-acid-catalyzed four-component Hantzsch enantioselective synthesis of polyhydroquinolines reported in 2009 is presented. In our hands, when the reaction was performed with fidelity to the original report using a chiral enantiopure phosphoric acid catalyst, no enantioselectivity was observed. Unlike in the original report, enantioselectivity results are backed by baseline separation of the enantiomers by HPLC analyses on chiral stationary phase with UV and chiroptical detection.
Collapse
Affiliation(s)
- Ophélie Quinonero
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| | - Clément Lemaitre
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| | - Marion Jean
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| | - Nicolas Vanthuyne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| | - Christian Roussel
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| | - Damien Bonne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| | | | - Cyril Bressy
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| | - Xavier Bugaut
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| |
Collapse
|
45
|
Zhang J, Xu Y, Wang Z, Zhong R, Wang Y. Organocatalyzed Cascade Aza-Michael/Aldol Reaction for Atroposelective Construction of 4-Naphthylquinoline-3-carbaldehydes. J Org Chem 2021; 86:4262-4273. [PMID: 33625226 DOI: 10.1021/acs.joc.1c00163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An organocatalyzed cascade aza-Michael/Aldol reaction of alkynals with N-(2-(1-naphthoyl)phenyl)benzenesulfonamides has been disclosed. In the presence of a secondary amine catalyst, this method enables the construction of a series of axially chiral 4-naphthylquinoline-3-carbaldehydes in yields of up to 97% with enantioselectivities of up to 96%. Several further transformations of the synthesized products were investigated to demonstrate their synthetic applications.
Collapse
Affiliation(s)
- Jing Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, People's Republic of China
| | - Yong Xu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People's Republic of China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, People's Republic of China
| | - Rong Zhong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People's Republic of China
| | - Yurong Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People's Republic of China
| |
Collapse
|
46
|
Shao YD, Han DD, Dong MM, Yang XR, Cheng DJ. A one-pot stepwise approach to axially chiral quinoline-3-carbaldehydes enabled by iminium–allenamine cascade catalysis. Org Chem Front 2021. [DOI: 10.1039/d0qo01339k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An organocatalytic atroposelective annulation between 2-(tosylamino)aryl ketones and 2-alkynals for the construction of enantioenriched axially chiral 4-arylquinoline-3-carbaldehydes is achieved.
Collapse
Affiliation(s)
- You-Dong Shao
- School of Chemistry and Chemical Engineering
- Heze University
- China
| | - Dan-Dan Han
- School of Chemistry and Chemical Engineering
- Heze University
- China
| | - Meng-Meng Dong
- School of Chemistry and Chemical Engineering
- Heze University
- China
| | - Xin-Ru Yang
- School of Chemistry and Chemical Engineering
- Heze University
- China
| | - Dao-Juan Cheng
- School of Pharmacy
- Anhui University of Chinese Medicine
- China
- School of Chemistry and Chemical Engineering
- Heze University
| |
Collapse
|
47
|
Tu MS, Chen KW, Wu P, Zhang YC, Liu XQ, Shi F. Advances in organocatalytic asymmetric reactions of vinylindoles: powerful access to enantioenriched indole derivatives. Org Chem Front 2021. [DOI: 10.1039/d0qo01643h] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes advances in vinylindole-based organocatalytic asymmetric reactions since 2008 and includes the applications of some methodologies in the total synthesis of natural products, points out remaining challenges in this research area.
Collapse
Affiliation(s)
- Man-Su Tu
- School of Chemistry and Materials Science
- the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province
- Jiangsu Normal University
- Xuzhou
- China
| | - Ke-Wei Chen
- School of Chemistry and Materials Science
- the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province
- Jiangsu Normal University
- Xuzhou
- China
| | - Ping Wu
- School of Chemistry and Materials Science
- the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province
- Jiangsu Normal University
- Xuzhou
- China
| | - Yu-Chen Zhang
- School of Chemistry and Materials Science
- the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province
- Jiangsu Normal University
- Xuzhou
- China
| | - Xiao-Qin Liu
- School of Chemistry and Materials Science
- the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province
- Jiangsu Normal University
- Xuzhou
- China
| | - Feng Shi
- School of Chemistry and Materials Science
- the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|
48
|
Carmona JA, Rodríguez-Franco C, Fernández R, Hornillos V, Lassaletta JM. Atroposelective transformation of axially chiral (hetero)biaryls. From desymmetrization to modern resolution strategies. Chem Soc Rev 2021; 50:2968-2983. [DOI: 10.1039/d0cs00870b] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Atroposelective transformations of (hetero)biaryls are classified into desymmetrization, kinetic resolution, dynamic kinetic resolution, and dynamic kinetic asymmetric transformation depending on the nature and behavior of the starting material.
Collapse
Affiliation(s)
- José A. Carmona
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- C/Américo Vespucio, 49
- 41092 Sevilla
- Spain
| | - Carlos Rodríguez-Franco
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- C/Américo Vespucio, 49
- 41092 Sevilla
- Spain
| | - Rosario Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Sevilla
- 41012 Sevilla
- Spain
| | - Valentín Hornillos
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- C/Américo Vespucio, 49
- 41092 Sevilla
- Spain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- C/Américo Vespucio, 49
- 41092 Sevilla
- Spain
| |
Collapse
|
49
|
Zhao Q, Peng C, Wang YT, Zhan G, Han B. Recent progress on the construction of axial chirality through transition-metal-catalyzed benzannulation. Org Chem Front 2021. [DOI: 10.1039/d1qo00307k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Useful chiral biaryls have been constructed through rhodium and gold complex-catalyzed asymmetric benzannulation strategies.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Yu-Ting Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| |
Collapse
|
50
|
Shao Y, Cheng D. Chiral Phosphoric Acid: A Powerful Organocatalyst for the Asymmetric Synthesis of Heterocycles with Chiral Atropisomerism. ChemCatChem 2020. [DOI: 10.1002/cctc.202001750] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- You‐Dong Shao
- School of Chemistry and Chemical Engineering Heze University Heze 274015 P. R. China
| | - Dao‐Juan Cheng
- School of Pharmacy Anhui University of Chinese Medicine Hefei 230012 P. R. China
| |
Collapse
|