1
|
Zhao X, Li J, Jian H, Lu M, Wang M. Two Novel Schiff Base Manganese Complexes as Bifunctional Electrocatalysts for CO 2 Reduction and Water Oxidation. Molecules 2023; 28:1074. [PMID: 36770742 PMCID: PMC9920694 DOI: 10.3390/molecules28031074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
One mononuclear Mn(III) complex [MnIIIL(H2O)(MeCN)](ClO4) (1) and one hetero-binuclear complex [(CuIILMnII(H2O)3)(CuIIL)2](ClO4)2·CH3OH (2) have been synthesized with the Schiff base ligand (H2L = N,N'-bis(3-methoxysalicylidene)-1,2-phenylenediamine). Single crystal X-ray structural analysis manifests that the Mn(III) ion in 1 has an octahedral coordination structure, whereas the Mn(II) ion in 2 possesses a trigonal bipyramidal configuration and the Cu(II) ion in 2 is four-coordinated with a square-planar geometry. Electrochimerical catalytic investigation demonstrates that the two complexes can electrochemically catalyze water oxidation and CO2 reduction simultaneously. The coordination environments of the Mn(III), Mn(II), and Cu(II) ions in 1 and 2 were provided by the Schiff base ligand (L) and labile solvent molecules. The coordinately unsaturated environment of the Cu(II) center in 2 can perfectly facilitate the catalytic performance of 2. Complexes 1 and 2 display that the over potentials for water oxidation are 728 mV and 216 mV, faradaic efficiencies (FEs) are 88% and 92%, respectively, as well as the turnover frequency (TOF) values for the catalytic reduction of CO2 to CO are 0.38 s-1 at -1.65 V and 15.97 s-1 at -1.60 V, respectively. Complex 2 shows much better catalytic performance for both water oxidation and CO2 reduction than that of complex 1, which could be owing to a structural reason which is attributed to the synergistic catalytic action of the neighboring Mn(III) and Cu(II) active sites in 2. Complexes 1 and 2 are the first two compounds coordinated with Schiff base ligand for both water oxidation and CO2 reduction. The finding in this work can offer significant inspiration for the future development of electrocatalysis in this area.
Collapse
Affiliation(s)
- Xin Zhao
- School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| | - Jingjing Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Hengxin Jian
- School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| | - Mengyu Lu
- School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| | - Mei Wang
- School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
2
|
Ganguly S, Bhunia P, Mayans J, Ghosh A. Trinuclear heterometallic CuII–MII (M = Mn and Co) complexes of N,O donor ligands with o-nitro benzoate anion: structures, magnetic properties and catalytic oxidase activities. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
3
|
Ma LJ, Li X, Yan YJ, Yue YN, Dong WK. An investigation of two heterobimetallic [Cu(II)2Ln(III)] (Ln = La and Ce) complexes of a more flexible bis(salamo)‐type ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Tripathy RR, Singha S, Sarkar S. A review on bio-functional models of catechol oxidase probed by less explored first row transition metals. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2122053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Shuvendu Singha
- Department of Chemistry, SAS, KIIT University, Bhubaneswar, Odisha, India
| | - Sohini Sarkar
- Department of Chemistry, SAS, KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|
5
|
Synthesis, crystal structure, fluorescence properties and theoretical calculations of heterobimetallic 3d–4f complex with a flexible bis(salamo)‐type ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Unusual fluorescence behavior of first 3d-3d′ heterobimetallic [Cu(II)2Mn(II)] complex bearing a bis(salamo)-based ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
Yue YN, La YT, Han XJ, Dong WK. Coordination-driven self-assemblies of two hetero‐trinuclear [Cu(II) 2Ln(III)] (Ln = La and Ce) complexes with a flexible bis(salamo)‐type ligand. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2050713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yong-Ning Yue
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Ya-Ting La
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Xiu-Juan Han
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| |
Collapse
|
8
|
Sushila, Shivam K, Venugopalan P, Rani J, Tian H, Goswami S, Patra R. Design of Dinuclear Lanthanide Complexes from N
2
O
2
Donor Ligand for Single Molecule Magnets: Crystalline Architecture and Slow Magnetic Relaxation Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202103720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sushila
- Department of Chemistry and Centre for Advance Studies Panjab University Chandigarh India
| | - Kumar Shivam
- Amity Institute of Click Chemistry Research & Studies (AICCRS) Amity University Noida India
| | - Paloth Venugopalan
- Department of Chemistry and Centre for Advance Studies Panjab University Chandigarh India
| | - Jyoti Rani
- School of Advance Chemical Sciences Shoolini University Solan Himachal Pradesh India
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology School of Chemistry and Chemical Engineering Liaocheng University Liaocheng 252059 P. R. China
| | - Soumyabrata Goswami
- Department of Chemistry Amity Institute of Applied Sciences Amity University Kolkata India
| | - Ranjan Patra
- Department of Chemistry and Centre for Advance Studies Panjab University Chandigarh India
- Amity Institute of Click Chemistry Research & Studies (AICCRS) Amity University Noida India
| |
Collapse
|
9
|
Sushila, Dhamija S, Patra M, Pécaut J, Kataria R, Goswami S, Bhowmik S, Patra R. Probing the structural features and magnetic behaviors in dinuclear cobalt(II) and trinuclear iron(III) complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Coordination polymers of VIV—MII (MII = Mn, Co, Ni, Cd) with ethylmalonate anions. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Thennarasu AS, Mohammed TP, Sankaralingam M. Mononuclear copper( ii) Schiff base complexes as effective models for phenoxazinone synthase. NEW J CHEM 2022. [DOI: 10.1039/d2nj03934f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Copper(ii) complexes of tridentate (N2O) Schiff base ligands as efficient catalysts for 2-aminophenol oxidation to 2-aminophenoxazin-3-one with excellent reaction rates.
Collapse
Affiliation(s)
- Abinaya Sushana Thennarasu
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Thasnim P Mohammed
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| |
Collapse
|
12
|
Sharma P, Baishya T, Gomila RM, Frontera A, Barcelo-Oliver M, Verma AK, Das J, Bhattacharyya MK. Structural topologies involving energetically significant antiparallel π-stacking and unconventional N(nitrile)⋯π(fumarate) contacts in dinuclear Zn( ii) and polymeric Mn( ii) compounds: antiproliferative evaluation and theoretical studies. NEW J CHEM 2022. [DOI: 10.1039/d1nj04786h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Anticancer activities considering cell viability, apoptosis and molecular docking have been explored in dinuclear Zn(ii) and polymeric Mn(ii) compounds involving energetically significant unconventional N(nitrile)⋯π(fum) contacts.
Collapse
Affiliation(s)
- Pranay Sharma
- Department of Chemistry, Cotton University, Guwahati-781001, Assam, India
| | | | - Rosa M. Gomila
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.7, 07122 Palma de Mallorca (Baleares), Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.7, 07122 Palma de Mallorca (Baleares), Spain
| | - Miquel Barcelo-Oliver
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.7, 07122 Palma de Mallorca (Baleares), Spain
| | - Akalesh K. Verma
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati-781001, India
| | - Jumi Das
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati-781001, India
| | | |
Collapse
|
13
|
Ganguly S, Bhunia P, Mayans J, Ghosh A. Pentanuclear M II–Mn II (M = Ni and Cu) complexes of N 2O 2 donor ligands with a variation of carboxylate anions: syntheses, structures, magnetic properties and catecholase-like activities. NEW J CHEM 2022. [DOI: 10.1039/d2nj02215j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One NiII2MnII3 and two CuII2MnII3 complexes have been synthesized using N2O2 donor ligands. The former complex exhibits spin crossover at 2 K temperature. All the complexes exhibit catecholase-like activities.
Collapse
Affiliation(s)
- Sayantan Ganguly
- Department of Chemistry, University College of Science, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, India
- Department of Chemistry, Taki Government College, Taki, Hasnabad, West Bengal 743429, India
| | - Pradip Bhunia
- Department of Chemistry, University College of Science, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, India
| | - Júlia Mayans
- Departament de Química Inorgànica i Orgànica and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), Martí iFranqués 1-11, Barcelona 08028, Spain
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, India
- Rani Rashmoni Green University, Tarakeswar, Hooghly 712410, West Bengal, India
| |
Collapse
|
14
|
Sezgin B, Dede B, Tilki T. Structural, theoretical and enzyme-like activities of novel Cu(II) and Mn(II) complexes with coumarin based bidentate ligand. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Ganguly S, Drew MG, Gomila RM, Frontera A, Ghosh A. Tri- and pentanuclear CuII–CdII complexes of N2O2 donor ligands with the variation of carboxylate coligands: Structural elucidation and theoretical study. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Maity S, Mahapatra P, Ghosh TK, Gomila RM, Frontera A, Ghosh A. Synthesis of Ni(ii)-Mn(ii) complexes using a new mononuclear Ni(ii) complex of an unsymmetrical N 2O 3 donor ligand: structures, magnetic properties and catalytic oxidase activity. Dalton Trans 2021; 50:4686-4699. [PMID: 33729241 DOI: 10.1039/d0dt04337k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new Ni(ii) complex [NiL] (complex 1) of an asymmetrically di-condensed N2O3 donor Schiff base ligand, N-salicylidene-N'-3-methoxysalicylidene-1,3-propanediamine (H2L), has been synthesized and utilized for the synthesis of three heterometallic complexes, [(NiL)2Mn(NCS)2(CH3OH)2]·CH3OH (2) [(NiL)2Mn(N(CN)2)2(CH3OH)2]·CH3OH (3) and [(NiL)2Mn2(N3)2(μ1,1-N3)2(CH3OH)2] (4). Single crystal X-ray diffraction analyses show that complexes 2 and 3 have linear trinuclear structures where two tridentate O3 donor (NiL) units are coordinated to the central octahedral Mn(ii) centre, whereas complex 4 has a centrosymmetric tetranuclear structure where two binuclear (NiL)Mn units are linked via two phenoxido and two μ1,1-N3 bridges. Among the heterometallic complexes (2-4), only 4 is active towards the catalytic oxidation of 3,5-di-tert-butylcatechol to the corresponding quinone. The turnover number for the aerobic oxidation of 3,5-DTBC is 935 h-1. ESI-mass spectra have been recorded to scrutinize the mechanistic pathway of this catalytic reaction. Variable temperature magnetic susceptibility measurements suggest that complexes 2-4 are antiferromagnetically coupled with coupling constants (J) of -4.84 and -5.23 cm-1 for complexes 2 and 3, respectively and J1 = -2.20 cm-1, J2 = 1.13 cm-1 and J3 = -1.12 cm-1 for complex 4. DFT calculations have been used to rationalize the magnetic super-exchange in complexes 2-4, by computing the theoretical coupling constants and analyzing the spin density plots.
Collapse
Affiliation(s)
- Souvik Maity
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India.
| | | | | | | | | | | |
Collapse
|
17
|
Mudi PK, Mahato RK, Joshi M, Shit M, Choudhury AR, Das HS, Biswas B. Copper(II) complexes with a benzimidazole functionalized Schiff base: Synthesis, crystal structures, and role of ancillary ions in phenoxazinone synthase activity. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Mayank Joshi
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Punjab India
| | - Madhusudan Shit
- Department of Chemistry Dinobandhu Andrews College Kolkata India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Punjab India
| | - Hari Sankar Das
- Department of Chemistry University of North Bengal Darjeeling India
| | - Bhaskar Biswas
- Department of Chemistry University of North Bengal Darjeeling India
| |
Collapse
|
18
|
Dutta S, Ghosh TK, Mahapatra P, Ghosh A. Joining of Trinuclear Heterometallic Cu II2-M II (M = Mn, Cd) Nodes by Nicotinate to Form 1D Chains: Magnetic Properties and Catalytic Activities. Inorg Chem 2020; 59:14989-15003. [PMID: 33001631 DOI: 10.1021/acs.inorgchem.0c01733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the present work, four new heterometallic coordination complexes, {[(CuL)2Mn(nic)(H2O)2](ClO4)(0.5H2O)}n (1), {[(CuL)2Cd(nic)(H2O)2](ClO4)(H2O)}n (2), [(CuL)2Mn(nic)2]·2CH3OH (3), and [(CuL)2Cd(nic)2]·2CH3OH (4) (where H2L = N,N'-bis(α-methylsalicylidene)-1,3-propanediamine and nic = nicotinate ion), have been synthesized and characterized by single-crystal X-ray crystallography. In complexes 1 and 2, the nicotinate ion acts as a bifunctional linker (N,O donor) and joins the linear trinuclear nodes to form 1D polymeric chains. However, in complexes 3 and 4, the nicotinate ion uses only the oxygen atoms of the carboxylic acid (O donor) to bind to the metal centers, forming discrete linear trinuclear units, while the pyridyl nitrogen (N donor atom) remains free. The dc magnetic susceptibility measurements show that the CuII and MnII ions are antiferromagnetically coupled in both 1 and 3, with exchange coupling constants (JMn-Cu) of -20.57 ± 0.08 and -9.38 ± 0.08 cm-1, respectively. Among the four complexes, 1 and 3 show catechol oxidase and phenoxazinone synthase like catalytic activities. The turnover numbers (kcat) of complexes 1 and 3 for catecholase activity are 1121 and 720 h-1, respectively, at an optimum pH of 8.0 and for phenoxazinone synthase activity are 429 and 398 h-1, respectively, at an optimum pH of 9.7. The higher kcat values of 1 for both reactions are attributable to a water molecule coordinated to the central MnII atom that facilitates the substrate-catalyst binding. An ESI-mass spectral analysis indicates that trinuclear heterometallic species, e.g., [(CuL)2Mn(nic)(H2O)]+ for 1 and [(CuL)2Mn(nic)]+ for 3, are the active species that bind to the substrate, and on that basis, probable mechanisms through the formation of radical intermediates have been proposed.
Collapse
Affiliation(s)
- Sabarni Dutta
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Tanmoy Kumar Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Prithwish Mahapatra
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.,Rani Rashmoni Green University, Tarakeswar, Hooghly 712410, West Bengal, India
| |
Collapse
|