1
|
Obregón EB, Rost LG, Kocemba IR, Kristensen A, McLeod DA, Jørgensen KA. Enantioselective (3+2) Annulation of Donor-Acceptor Cyclopropanes with Aldehydes and Ketones Catalyzed by Brønsted Bases. Angew Chem Int Ed Engl 2024; 63:e202410524. [PMID: 39007180 DOI: 10.1002/anie.202410524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
The substituted tetrahydrofuran core is a structural motif in many biologically active and natural compounds. However, the scarcity of enantioselective methods developed towards its synthesis makes this field challenging and attractive to explore. Herein, the first Brønsted-base catalyzed enantioselective (3+2) annulation of donor-acceptor cyclopropanes with aldehydes and ketones affording enantioenriched 2,3,5-substituted tetrahydrofurans is reported. The reaction concept is based on activation of racemic β-cyclopropyl ketones by a chiral bifunctional Brønsted base which catalyzes the (3+2) annulation for a range of aldehydes and ketones. For aldehydes, the annulation furnished tetrahydrofurans in excellent yield, good diastereoselectivity and with excellent enantioselectivity up to >99 % ee. Surprisingly, aromatic aldehydes afforded the cis-2,5-substituted tetrahydrofurans as the major diastereoisomer, while for aliphatic aldehydes the trans-cycloadduct was favored. The reaction also proceeds well for ketones affording spiro tetrahydrofurans in excellent yields and enantioselectivities (up to 99 % ee). Hammett studies have been conducted to elucidate the influence of the electronic nature of benzaldehydes on the stereoselectivity. Based on the diastereochemical outcome for the aldehydes, two reaction paths for aromatic and aliphatic aldehydes are proposed. Finally, two diastereoselective synthetic transformations have been conducted to demonstrate the synthetic potential of the obtained products.
Collapse
Affiliation(s)
| | - Louise G Rost
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Ida R Kocemba
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Anne Kristensen
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - David A McLeod
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | | |
Collapse
|
2
|
Timmerman JC, Filiberti S. Stereoselective Synthesis of anti-2,4-Disubstituted Tetrahydrofurans via a Pd-Catalyzed Hayashi-Heck Arylation and Rh-Catalyzed Hydroformylation Sequence. J Org Chem 2024; 89:11796-11801. [PMID: 39087504 DOI: 10.1021/acs.joc.4c01215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A catalytic, two-step protocol for the expedient synthesis of anti-2,4-disubstituted tetrahydrofurans is described. In the first step, an enantioselective and regioselective Pd-catalyzed Hayashi-Heck arylation was developed using (R)-hexaMeOBiphep to generate 5-aryl-2,3-dihydrofurans. A subsequent Rh-catalyzed hydroformylation step proceeds at low Rh loading with high regio- and diastereoselectivity for the anti-2,4-disubstituted tetrahydrofuran isomer. Key to the development of the hydroformylation reaction was the utilization of either (R)-Me-i-Pr-INDOLphos or (R,R)-Ph-BPE to control the regioselectivity and provide the kinetic product isomer.
Collapse
Affiliation(s)
- Jacob C Timmerman
- Department of Synthetic Molecule Process Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Sara Filiberti
- Department of Synthetic Molecule Process Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
3
|
Minami R, Kasai T, Murata K, Fuwa H. Total Synthesis of (+)-Muricatetrocin B via a Late-Stage Co-Catalyzed Hartung-Mukaiyama Cyclization. Org Lett 2023; 25:5745-5749. [PMID: 37530592 DOI: 10.1021/acs.orglett.3c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Convergent total synthesis of (+)-muricatetrocin B, a tetrahydrofuran-containing acetogenin with potent and selective cytotoxicity against the HT-29 human colon adenocarcinoma cell line, was achieved in 13 steps. Our synthesis is highlighted by a late-stage sequential olefin cross-metathesis/Hartung-Mukaiyama cyclization for convergent assembly of the 2,5-trans-substituted tetrahydrofuran ring.
Collapse
Affiliation(s)
- Riko Minami
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tsubasa Kasai
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Keisuke Murata
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
4
|
Fernandes RA, Gorve DA, Jha AK. Protecting-group-directed stereodivergent Tsuji-Trost cyclization: total synthesis of oxylipids and (+)-petromyroxol. Chem Commun (Camb) 2023; 59:2007-2010. [PMID: 36723058 DOI: 10.1039/d2cc04579f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A stereodivergent protecting-group-directed Tsuji-Trost cyclization for efficient synthesis of both 2,5-cis- and 2,5-trans-disubstituted-THF scaffolds has been realized. The presence of a β-O-silyl group in allyl acetate results in cis-2,5-disubstituted-3-oxygenated THF in a good up to 9 : 1 dr. Alternatively, when the free OH at the β-position is available for acetate co-ordination, it gives a trans-2,5-disubstituted-3-hydroxy THF scaffold almost as a single diastereomer (up to 1 : 0 dr). The THF scaffolds synthesized were carried forward in the total synthesis of oxylipids and (+)-petromyroxol.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Dnyaneshwar A Gorve
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Amit K Jha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| |
Collapse
|
5
|
The Tetrahydrofuran Motif in Marine Lipids and Terpenes. Mar Drugs 2022; 20:md20100642. [PMID: 36286465 PMCID: PMC9605582 DOI: 10.3390/md20100642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Heterocycles are particularly common moieties within marine natural products. Specifically, tetrahydrofuranyl rings are present in a variety of compounds which present complex structures and interesting biological activities. Focusing on terpenoids, a high number of tetrahydrofuran-containing metabolites have been isolated during the last decades. They show promising biological activities, making them potential leads for novel antibiotics, antikinetoplastid drugs, amoebicidal substances, or anticancer drugs. Thus, they have attracted the attention of the synthetics community and numerous approaches to their total syntheses have appeared. Here, we offer the reader an overview of marine-derived terpenoids and related compounds, their isolation, structure determination, and a special focus on their total syntheses and biological profiles.
Collapse
|
6
|
Rapid assembly of stereochemically rich polycyclic tetrahydrofurans by a conjugate addition-Rh(II) catalysis sequence. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Casali E, Porta A, Toma L, Zanoni G. Oxo-Rhenium-Mediated Allylation of Furanoside Derivatives: A Computational Study on the Mechanism and the Stereoselectivity. J Org Chem 2022; 87:9497-9506. [PMID: 35820228 PMCID: PMC9361356 DOI: 10.1021/acs.joc.2c00393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Properly substituted tetrahydrofuran (THF) rings are
important
building blocks in the synthesis of many natural metabolites. Having
reliable procedures to control the stereoselectivity at the THF core
while decorating it with different substituents is a fundamental requirement
to achieve and fulfill the complexity of nature. We recently reported
a new chemical approach to control the stereochemistry in the alkylation
and arylation of furanoside derivatives by using a rhenium(V) complex
to form an intermediate oxo-carbenium species able to react with proper
soft nucleophiles. Here, we describe theoretical calculations, performed
at the DFT B3LYP level, to disclose the important mechanistic features
which regulate the entire catalytic cycle of the reaction of mono-
and disubstituted furanosides with allyltrimethylsilane catalyzed
by Re(O)Cl3(OPPh3)(Me2S). Moreover,
the key factors governing the allylation step were investigated, confirming
that the stereoselectivity, which is independent of the anomeric configuration
of starting acetal, mainly arises from the orientation of the substituent
at C-4, with only marginal contribution of the substituent at C-5.
Finally, puckering Cremer–Pople parameters were used to take
trace of the structural modifications throughout the catalytic cycle.
Collapse
Affiliation(s)
- Emanuele Casali
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| | - Alessio Porta
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| | - Lucio Toma
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| |
Collapse
|
8
|
Tadiparthi K, Chatterjee S. Synthetic Approaches to Diospongins: A Two Decade Journey. SYNOPEN 2022. [DOI: 10.1055/s-0040-1720032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
AbstractTetrahydropyran units having multiple stereogenic centers serve as excellent building blocks for various active pharmaceutical ingredients (APIs). In particular, the presence of the unique molecular architecture of the trisubstituted tetrahydropyran (THP) unit in diospongins enhances their biological activity due to multiple stereogenic centers and has attracted attention from the synthetic community over the last two decades. In this review, we discuss synthetic approaches to chiral and racemic forms of diospongins during the period 2006–2020 in chronological order.
Collapse
|
9
|
Arizmendi N, Alam SB, Azyat K, Makeiff D, Befus AD, Kulka M. The Complexity of Sesquiterpene Chemistry Dictates Its Pleiotropic Biologic Effects on Inflammation. Molecules 2022; 27:2450. [PMID: 35458648 PMCID: PMC9032002 DOI: 10.3390/molecules27082450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Sesquiterpenes (SQs) are volatile compounds made by plants, insects, and marine organisms. SQ have a large range of biological properties and are potent inhibitors and modulators of inflammation, targeting specific components of the nuclear factor-kappaB (NF-κB) signaling pathway and nitric oxide (NO) generation. Because SQs can be isolated from over 1600 genera and 2500 species grown worldwide, they are an attractive source of phytochemical therapeutics. The chemical structure and biosynthesis of SQs is complex, and the SQ scaffold represents extraordinary structural variety consisting of both acyclic and cyclic (mono, bi, tri, and tetracyclic) compounds. These structures can be decorated with a diverse range of functional groups and substituents, generating many stereospecific configurations. In this review, the effect of SQs on inflammation will be discussed in the context of their complex chemistry. Because inflammation is a multifactorial process, we focus on specific aspects of inflammation: the inhibition of NF-kB signaling, disruption of NO production and modulation of dendritic cells, mast cells, and monocytes. Although the molecular targets of SQs are varied, we discuss how these pathways may mediate the effects of SQs on inflammation.
Collapse
Affiliation(s)
- Narcy Arizmendi
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - Syed Benazir Alam
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - Khalid Azyat
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - Darren Makeiff
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - A Dean Befus
- Alberta Respiratory Centre, Department of Medicine, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
10
|
Li H, Khan I, Li Q, Zhang YJ. Pd-Catalyzed Asymmetric Three-Component Allenol Carbopalladation and Allylic Cycloaddition Cascade: A Route to Functionalized Tetrahydrofurans. Org Lett 2022; 24:2081-2086. [PMID: 35274964 DOI: 10.1021/acs.orglett.2c00142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first Pd-catalyzed asymmetric three-component reaction of 2,3-allenol, aryl iodides, and 2-arylmethylenemolononitriles has been developed via an allenol carbopalladation and an allylic cycloaddition cascade. This process allows rapid access to substituted tetrahydrofurans bearing diverse functional groups in good yields with high diastereoselectivities and excellent enantioselectivities. The concise total synthesis of a lignan, (-)-2-episesaminone, has been achieved by the elaboration of a functionalized tetrahydrofuran obtained from this reaction.
Collapse
Affiliation(s)
- Hongfang Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ijaz Khan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qun Li
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P. R. China
| | - Yong Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
11
|
Fernández-Peña L, Díez-Poza C, González-Andrés P, Barbero A. The Tetrahydrofuran Motif in Polyketide Marine Drugs. Mar Drugs 2022; 20:120. [PMID: 35200649 PMCID: PMC8880653 DOI: 10.3390/md20020120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Oxygen heterocycles are units that are abundant in a great number of marine natural products. Among them, marine polyketides containing tetrahydrofuran rings have attracted great attention within the scientific community due to their challenging structures and promising biological activities. An overview of the most important marine tetrahydrofuran polyketides, with a focused discussion on their isolation, structure determination, approaches to their total synthesis, and biological studies is provided.
Collapse
Affiliation(s)
| | | | | | - Asunción Barbero
- Department of Organic Chemistry, Campus Miguel Delibes, University of Valladolid, 47011 Valladolid, Spain; (L.F.-P.); (C.D.-P.); (P.G.-A.)
| |
Collapse
|
12
|
Xu H, Pi C, Wu Y, Cui X. Three-component synthesis of α-indole-β-sulfonyl tetrahydrofurans under metal-free conditions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05749a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient multi-component reaction has been developed for the synthesis of 2,3-disubstituted tetrahydrofurans in a “one pot” manner, starting from readily available 2-arylindoles, arylsulfonyl azides, and tetrahydrofuran under simple and easily operated reaction conditions.
Collapse
Affiliation(s)
- Haopeng Xu
- College of Chemistry and Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Chao Pi
- College of Chemistry and Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yangjie Wu
- College of Chemistry and Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xiuling Cui
- College of Chemistry and Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
13
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
14
|
Tadiparthi K. Total Syntheses of Centrolobines: A Two‐Decade Journey. ChemistrySelect 2021. [DOI: 10.1002/slct.202102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Zorba L, Egaña E, Gómez-Bengoa E, Vougioukalakis GC. Zinc Iodide Catalyzed Synthesis of Trisubstituted Allenes from Terminal Alkynes and Ketones. ACS OMEGA 2021; 6:23329-23346. [PMID: 34549133 PMCID: PMC8444324 DOI: 10.1021/acsomega.1c03092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/13/2021] [Indexed: 05/03/2023]
Abstract
A straightforward, user-friendly, efficient protocol for the one pot, ZnI2-catalyzed allenylation of terminal alkynes with pyrrolidine and ketones, toward trisubstituted allenes, is described. Trisubstituted allenes can be obtained under either conventional heating or microwave irradiation conditions, which significantly reduces the reaction time. A sustainable, widely available, and low-cost metal salt catalyst is employed, and the reactions are carried out under solvent-free conditions. Among others, synthetically valuable allenes bearing functionalities such as amide, hydroxyl, or phthalimide can be efficiently prepared. Mechanistic experiments, including kinetic isotope effect measurements and density functional theory (DFT) calculations, suggest a rate-determining [1,5]-hydride transfer during the transformation of the intermediate propargylamine to the final allene.
Collapse
Affiliation(s)
- Leandros
P. Zorba
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Eunate Egaña
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Enrique Gómez-Bengoa
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Georgios C. Vougioukalakis
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| |
Collapse
|
16
|
Casali E, Othman ST, Dezaye AA, Chiodi D, Porta A, Zanoni G. Highly Stereoselective Glycosylation Reactions of Furanoside Derivatives via Rhenium (V) Catalysis. J Org Chem 2021; 86:7672-7686. [PMID: 34033490 PMCID: PMC8279489 DOI: 10.1021/acs.joc.1c00706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel approach for the formation of anomeric carbon-functionalized furanoside systems was accomplished through the employment of an oxo-rhenium catalyst. The transformation boasts a broad range of nucleophiles including allylsilanes, enol ethers, and aromatics in addition to sulfur, nitrogen, and hydride donors, able to react with an oxocarbenium ion intermediate derived from furanosidic structures. The excellent stereoselectivities observed followed the Woerpel model, ultimately providing 1,3-cis-1,4-trans systems. In the case of electron-rich aromatic nucleophiles, an equilibration occurs at the anomeric center with the selective formation of 1,3-trans-1,4-cis systems. This anomalous result was rationalized through density functional theory calculations. Different oxocarbenium ions such as those derived from dihydroisobenzofuran, pyrrolidine, and oxazolidine heterocycles can also be used as a substrate for the oxo-Re-mediated allylation reaction.
Collapse
Affiliation(s)
- Emanuele Casali
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, Pavia 27100, Italy
| | - Sirwan T Othman
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil 44002, Iraq
| | - Ahmed A Dezaye
- International University of Erbil, Newroz Street, Erbil-Kurdistan 44001, Iraq
| | - Debora Chiodi
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, Pavia 27100, Italy
| | - Alessio Porta
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, Pavia 27100, Italy
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, Pavia 27100, Italy
| |
Collapse
|
17
|
Mu Y, Zhang T, Cheng Y, Fu W, Wei Z, Chen W, Liu G. Efficient synthesis of tetrahydrofurans with chiral tertiary allylic alcohols catalyzed by Ni/P-chiral ligand DI-BIDIME. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02470h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Efficient nickel-catalyzed stereoselective asymmetric intramolecular reductive cyclization of O-alkynones with P-chiral bisphosphorus ligand DI-BIDIME is reported.
Collapse
Affiliation(s)
- Yu Mu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Tao Zhang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Yaping Cheng
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Wenzhen Fu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Zuting Wei
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Wanjun Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Guodu Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| |
Collapse
|
18
|
Mullapudi V, Ahmad I, Senapati S, Ramana CV. Total Synthesis of (+)-Petromyroxol, (-)- iso-Petromyroxol, and Possible Diastereomers. ACS OMEGA 2020; 5:25334-25348. [PMID: 33043213 PMCID: PMC7542842 DOI: 10.1021/acsomega.0c03674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The total synthesis of (+)-petromyroxol (1) and its seven diastereomers including the (-)-iso-petromyroxol (2) is described. The employed strategy involves the use of easily available C5-epimeric epoxides 5 and 5' and nonselective anomeric C1-allylation, proceeding with or without inversion at C2, thereby giving the possibility of synthesizing all possible diastereomers. Extensive two-dimensional (2D) NMR analyses of all eight diastereomers have been carried out to assign the chemical shifts of the central carbons and the corresponding attached hydrogens and to learn how the C/H-chemical shifts of the tetrahydrofuran ring were influenced by the adjacent centers.
Collapse
Affiliation(s)
- Venkannababu Mullapudi
- Division
of Organic Chemistry, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy
of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110002, India
| | - Iram Ahmad
- Division
of Organic Chemistry, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Sibadatta Senapati
- Division
of Organic Chemistry, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy
of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110002, India
| | - Chepuri V. Ramana
- Division
of Organic Chemistry, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy
of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110002, India
| |
Collapse
|
19
|
Fernandes RA, Gorve DA, Pathare RS. Emergence of 2,3,5-trisubstituted tetrahydrofuran natural products and their synthesis. Org Biomol Chem 2020; 18:7002-7025. [PMID: 32966508 DOI: 10.1039/d0ob01542c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The emergence of various 2,3,5-trisubstituted tetrahydrofuran natural products in the recent literature and their synthesis is the focus of this review. These molecules exhibit varied bioactivities and have garnered the interest of several synthetic chemists owing to their efficient synthesis. A few of them have been synthesized and their absolute stereo structure has been confirmed for the first time. These will be appealing candidates in future synthetic investigations along with the untouched molecules. Thus, this compilation will reveal these molecules for expansion of their diversity within the realm of both synthesis and bioactivity studies.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Dnyaneshwar A Gorve
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Ramdas S Pathare
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|