1
|
Liu D, Yang X, Wang B. A Tale of Two Cities in Fluorescent Sensing of Carbon Monoxide: Probes That Detect CO and Those That Detect Only Chemically Reactive CO Donors (CORMs), but Not CO. J Org Chem 2024; 89:17891-17909. [PMID: 39540647 DOI: 10.1021/acs.joc.4c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Carbon monoxide (CO) is endogenously produced with a range of pharmacological activities. Sensitive and selective detection of CO is critical to studying its biology. Since the first report of a CO fluorescent probe in 2012, more than 100 papers on this topic have appeared. Noteworthy in such work is the widespread use of two commercially available ruthenium-carbonyl complexes (CORM-2 and CORM-3) as CO surrogates. Unfortunately, these two CORMs are chemically very reactive and preferentially release CO2 but not CO, unless in the presence of a nucleophile. As a result, there are "two tales" of the reported CO probes: those that detect CO and those that detect only the CORM used but not CO. In addition, because of their lack of reliable CO production and fast degradation in an aqueous solution, there is the question of what "detecting CORM-2 or CORM-3" really means in the context of CO research. Additionally, for applying fluorescent CO probes in detecting low levels (often nanomolar) of CO in vivo, fast reaction kinetics is a prerequisite for meaningful results. In this Perspective, we discuss in detail these issues with the understanding of the evolutionary nature of scientific discoveries and the aim of preventing further confusion.
Collapse
Affiliation(s)
- Dongning Liu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
2
|
Noreen S, Mansha A, Asim S. Investigating the Use of Coumarin Derivatives as Lasers. J Fluoresc 2024; 34:2437-2449. [PMID: 37837509 DOI: 10.1007/s10895-023-03459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/30/2023] [Indexed: 10/16/2023]
Abstract
A benzene ring and a lactone ring combine to form the chemical coumarin. Dye lasers have made significant advances in laser technology. The coumarin molecule itself is a non-fluorescent but it displays high fluorescence when electron-denoting substituents such as sulfonamide, benzopyrone, amine, benzothiazole, hydroxyl, methoxy are substituted at various positions. Substituted coumarin possesses the highest energy properties, photostability, and alteration in electron mobility, and therefore could be effectively used as dye lasers. These are considered some of the best fluorophores due to their outstanding photophysical and photochemical properties, which include high fluorescence quantum yields, great photostability, good functionality, and a wide spectrum range. Various inorganic materials are used in classic laser technology to generate the necessary emission. Inorganic lasers come in various types and can emit light in the electromagnetic spectrum's ultraviolet, visible, or infrared parts. Inorganic lasers have certain limitations, which is why coumarin lasers are becoming increasingly popular due to their many advantages. Compared to inorganic lasers, dye lasers offer far better tunability and cover the entire visible and near-infrared range. They only emit at very few specific wavelengths and in extremely narrow bands. The property is therefore presented in this review.
Collapse
Affiliation(s)
- Sobia Noreen
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Punjab, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University, Faisalabad, 38000, Punjab, Pakistan
| | - Sadia Asim
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Punjab, Pakistan.
| |
Collapse
|
3
|
Liu H, Liu T, Qin Q, Li B, Li F, Zhang B, Sun W. The importance of and difficulties involved in creating molecular probes for a carbon monoxide gasotransmitter. Analyst 2023; 148:3952-3970. [PMID: 37522849 DOI: 10.1039/d3an00849e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
As one of the triumvirate of recognized gasotransmitter molecules, namely NO, H2S, and CO, the physiological effects of CO and its potential as a biomarker have been widely investigated, garnering particular attention due to its reported hypotensive, anti-inflammatory, and cytoprotective properties, making it a promising therapeutic agent. However, the development of CO molecular probes has remained relatively stagnant in comparison with the fluorescent probes for NO and H2S, owing to its inert molecular state under physiological conditions. In this review, starting from elucidating the definition and significance of CO as a gasotransmitter, the imperative for the advancement of CO probes, especially fluorescent probes, is expounded. Subsequently, the current state of development of CO probe methodologies is comprehensively reviewed, with an overview of the challenges and prospects in this burgeoning field of research.
Collapse
Affiliation(s)
- Huanying Liu
- School of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, China
| | - Ting Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Qian Qin
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| | - Bingyu Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Biswas B, Deka S, Mondal P, Ghosh S. The emergence and advancement of Tsuji-Trost reaction triggered carbon monoxide recognition and bioimaging. Org Biomol Chem 2023; 21:6263-6288. [PMID: 37522382 DOI: 10.1039/d3ob00444a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Considering that carbon monoxide is both a vital gasotransmitter and an obnoxious gas, tremendous efforts have been dedicated toward its recognition through various methods. However, the fluorescent light-up approach through the exploration of optical markers remains one of the most convenient methods owing to its several advantages. Amongst the different approaches towards the development of CO responsive optically active molecular markers, the Tsuji-Trost reaction-based CO recognition strategy has remained one of the most significant areas of interest across researchers working in this field. However, there have been no attempts to exclusively summarize the commendable work done in this area yet. The current review, therefore, attempts to summarize the developments of various optical probes following this reaction strategy until the year 2022. This review provides detailed mechanistic insights into the Tsuji-Trost mediated CO detection strategy. Besides, discussions on the strategic development and employment of probes based on various allyl derivatives - allyl carbamate/carbonate/ethers - will provide a thorough understanding of the detection method. The significant advancements of the Tsuji-Trost reaction as an interesting strategy that is accepted and extensively explored for monitoring CO in various media including air, aqueous solutions and living systems have been elaborately discussed. Various potential applications and utilization of these developed fluorogenic probes for tracing CO in different living systems have been examined systematically. Moreover, monitoring of exogenous/endogenous CO levels, modulation of intracellular CO concentration under various induced conditions and bioimaging of CO in in vivo models have also been detailed here. Briefly, this review summarizes the current prospects of this detection method and the future directions in related fields.
Collapse
Affiliation(s)
- Bidisha Biswas
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi-175001, Himachal Pradesh, India.
| | - Snata Deka
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi-175001, Himachal Pradesh, India.
| | - Prosenjit Mondal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi-175001, Himachal Pradesh, India.
| | - Subrata Ghosh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi-175001, Himachal Pradesh, India.
| |
Collapse
|
5
|
Liu D, Yang X, Wang B. Sensing a CO-Releasing Molecule (CORM) Does Not Equate to Sensing CO: The Case of DPHP and CORM-3. Anal Chem 2023; 95:9083-9089. [PMID: 37263968 PMCID: PMC10267888 DOI: 10.1021/acs.analchem.3c01495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Carbon monoxide (CO) is an endogenous signaling molecule with demonstrated pharmacological effects. For studying CO biology, there is a need for sensitive and selective fluorescent probes for CO as research tools. In developing such probes, CO gas and/or commercially available metal-carbonyl-based "CO-releasing molecules" (CORMs) have been used as CO sources. However, new findings are steadily emerging that some of these commonly used CORMs do not release CO reliably in buffers commonly used for studying such CO probes and have very pronounced chemical reactivities of their own, which could lead to the erroneous identification of "CO probes" that merely detect the CORM used, not CO. This is especially true when the CO-sensing mechanism relies on chemistry that is not firmly established otherwise. Cu2+ can quench the fluorescence of an imine-based fluorophore, DPHP, presumably through complexation. The Cu2+-quenched fluorescence was restored through the addition of CORM-3, a Ru-based CORM. This approach was reported as a new "strategy for detecting carbon monoxide" with the proposed mechanism being dependent on CO reduction of Cu2+ to Cu1+ under near-physiological conditions ( Anal. Chem. 2022, 94, 11298-11306). The study only used CORM-3 as the source of CO. CORM-3 has been reported to have very pronounced redox reactivity and is known not to release CO in an aqueous solution unless in the presence of a strong nucleophile. To assess whether the fluorescent response of the DPHP-Cu(II) cocktail to CORM-3 was truly through detecting CO, we report experiments using both pure CO and CORM-3. We confirm the reported DPHP-Cu(II) response to CORM-3 but not pure CO gas. Further, we did not observe the stated selectivity of DPHP for CO over sulfide species. Along this line, we also found that a reducing agent such as ascorbate was able to induce the same fluorescent turn-on as CORM-3 did. As such, the DPHP-Cu(II) system is not a CO probe and cannot be used to study CO biology. Corollary to this finding, it is critical that future work in developing CO probes uses more than a chemically reactive "CO donor" as the CO source. Especially important will be to confirm the ability of the "CO probe" to detect CO using pure CO gas or another source of CO.
Collapse
Affiliation(s)
- Dongning Liu
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaoxiao Yang
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
6
|
Tang J, Zhang P, Li Z, Zhang Y, Chen H, Li X, Wei C. A simple ratiometric fluorescent probe for two-photon imaging of carbon monoxide in living cells and zebrafish. Bioorg Chem 2023; 135:106489. [PMID: 37003133 DOI: 10.1016/j.bioorg.2023.106489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
Carbon monoxide (CO) is an important gas signaling molecule and has been widely involved in regulating important life processes. Effective monitoring of CO in living systems is critical. Combined with the accuracy of ratio detection and the advantages of two-photon imaging, a simple ratiometric two-photon fluorescent probe RTFP was rationally designed and synthesized using 7-(diethylamino)-4-hydroxycoumarin as a two-photon fluorophore and allyl carbonate as the reactive unit. Probe RTFP exhibited excellent selectivity and sensitivity towards CO, and was successfully applied to image endogenous CO in living cells and zebrafish.
Collapse
|
7
|
Fan Y, Wu Y, Hou J, Wang P, Peng X, Ge G. Coumarin-based near-infrared fluorogenic probes: Recent advances, challenges and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Sakla R, Ghosh A, Kumar V, Kanika, Das P, Sharma PK, Khan R, Jose DA. Light activated simultaneous release and recognition of biological signaling molecule carbon monoxide (CO). Methods 2023; 210:44-51. [PMID: 36642393 DOI: 10.1016/j.ymeth.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
The therapeutic action of carbon monoxide (CO) is very well known and has been studied on various types of tissues and animals. However, real-time spatial and temporal tracking and release of CO is still a challenging task. This paper reported an amphiphilic CO sensing probe NP and phospholipid 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) based nanoscale vesicular sensing system Ves-NP consisting of NP. The liposomal sensing system (Ves-NP) showed good selectivity and sensitivity for CO without any interference from other relevant biological analytes. Detection of CO is monitored by fluorescence OFF-ON signal. Ves-NP displayed LOD of 5.94 µM for CO detection with a response time of 5 min. Further, in a novel attempt, Ves-NP is co-embedded with the amphiphilic CO-releasing molecule 1-Mn(CO)3 to make an analyte replacement probe Ves-NP-CO. Having a both CO releasing and sensing moiety at the surface of the same liposomal system Ves-NP-CO play a dual role. Ves-NP-CO is used for the simultaneous release and recognition of CO that can be controlled by light. Thus, in this novel approach, for the first time we have attached both the release and recognition units of CO in the vesicular surface, both release and recognition simultaneously monitored by the change in fluorescent OFF-ON signal.
Collapse
Affiliation(s)
- Rahul Sakla
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India; Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Amrita Ghosh
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| | - Vinod Kumar
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603203, Tamil Nadu, India
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - D Amilan Jose
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India.
| |
Collapse
|
9
|
Yang X, Yuan Z, Lu W, Yang C, Wang M, Tripathi R, Fultz Z, Tan C, Wang B. De Novo Construction of Fluorophores via CO Insertion-Initiated Lactamization: A Chemical Strategy toward Highly Sensitive and Highly Selective Turn-On Fluorescent Probes for Carbon Monoxide. J Am Chem Soc 2023; 145:78-88. [PMID: 36548940 PMCID: PMC10287542 DOI: 10.1021/jacs.2c07504] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extensive studies in the last few decades have led to the establishment of CO as an endogenous signaling molecule and subsequently to the exploration of CO's therapeutic roles. In the current state, there is a critical conundrum in CO-related research: the extensive knowledge of CO's biological effects and yet an insufficient understanding of the quantitative correlations between the CO concentration and biological responses of various natures. This conundrum is partially due to the difficulty in examining precise concentration-response relationships of a gaseous molecule. Another reason is the need for appropriate tools for the sensitive detection and concentration determination of CO in the biological system. We herein report a new chemical approach to the design of fluorescent CO probes through de novo construction of fluorophores by a CO insertion-initiated lactamization reaction, which allows for ultra-low background and exclusivity in CO detection. Two series of CO detection probes have been designed and synthesized using this strategy. Using these probes, we have extensively demonstrated their utility in quantifying CO in blood, tissue, and cell culture and in cellular imaging of CO from exogenous and endogenous sources. The probes described will enable many biology and chemistry labs to study CO's functions in a concentration-dependent fashion with very high sensitivity and selectivity. The chemical and design principles described will also be applicable in designing fluorescent probes for other small molecules.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Ce Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Minjia Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677 USA
| | - Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zach Fultz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
10
|
Recent advances in colorimetric and fluorometric sensing of neurotransmitters by organic scaffolds. Eur J Med Chem 2022; 244:114820. [DOI: 10.1016/j.ejmech.2022.114820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022]
|
11
|
Ahmmed E, Sarkar D, Mondal A, Saha NC, Bhattacharyya S, Chattopadhyay P. A new metal-free benzorhodol-based photoluminophore selective for carbon monoxide detection applicable in both in vitro and in vivo bioimaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3196-3202. [PMID: 35938936 DOI: 10.1039/d2ay00835a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A new benzorhodol-based non-fluorescent organic frame (DEB-CO) detects carbon monoxide (CO) selectively through a spirolactam ring-opening mechanism. Herein, the selective off-on fluorogenic behavior of this probe towards CO has been achieved without any assistance of precious and hazardous metals (e.g. Pd2+) as additional substrates. Moreover, the red-emissive probe motivated us to apply in situ tracing in mice and living cells. The selective off-on fluorogenic behavior of this probe towards CO originating from CORM-3 in vitro and in vivo with a limit of detection as low as 64.29 nM (for CORM-3) has been observed. Additionally, this probe is capable of sensing toxic carbon monoxide gas. This probe has also been utilized to detect intracellular CO in MCF7 cells (in vitro) and to spot the distribution of CO in mice (in vivo) by acquiring bioimages with the help of confocal microscopy, which indicates that DEB-CO is a smart competent probe for this purpose.
Collapse
Affiliation(s)
- Ejaj Ahmmed
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Debanjan Sarkar
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho-Kanho-Birsha University, Purulia-723104, West Bengal, India
| | - Asit Mondal
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Nimai Chandra Saha
- Vice Chancellor's Research Group, The University of Burdwan, Burdwan-713104, West Bengal, India
| | - Sankar Bhattacharyya
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho-Kanho-Birsha University, Purulia-723104, West Bengal, India
| | - Pabitra Chattopadhyay
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| |
Collapse
|
12
|
Wu Y, Deng X, Ye L, Zhang W, Xu H, Zhang B. A TCF-Based Carbon Monoxide NIR-Probe without the Interference of BSA and Its Application in Living Cells. Molecules 2022; 27:4155. [PMID: 35807401 PMCID: PMC9268636 DOI: 10.3390/molecules27134155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
As toxic gaseous pollution, carbon monoxide (CO) plays an essential role in many pathological and physiological processes, well-known as the third gasotransmitter. Owning to the reducibility of CO, the Pd0-mediated Tsuji-Trost reaction has drawn much attention in CO detection in vitro and in vivo, using allyl ester and allyl ether caged fluorophores as probes and PdCl2 as co-probes. Because of its higher decaging reactivity than allyl ether in the Pd0-mediated Tsuji-Trost reaction, the allyl ester group is more popular in CO probe design. However, during the application of allyl ester caged probes, it was found that bovine serum albumin (BSA) in the fetal bovine serum (FBS), an irreplaceable nutrient in cell culture media, could hydrolyze the allyl ester bond, and thus give erroneous imaging results. In this work, dicyanomethylenedihydrofuran (TCF) and dicyanoisophorone (DCI) were selected as electron acceptors for constructing near-infrared-emission fluorophores with electron donor phenolic OH. An allyl ester and allyl ether group were installed onto TCF-OH and DCI-OH, constructing four potential CO fluorescent probes, TCF-ester, TCF-ether, DCI-ester, and DCI-ether. Our data revealed that ester bonds of TCF-ester and DCI-ester could completely hydrolyze in 20 min, but ether bonds in TCF-ether and DCI-ether tolerate the hydrolysis of BSA and no released fluorescence was observed even up to 2 h. Moreover, passing through the screen, it was concluded that TCF-ether is superior to DCI-ether due to its higher reactivity in a Pd0-mediated Tsuji-Trost reaction. Also, the large stokes shift of TCF-OH, absorption and emission at 408 nm and 618 nm respectively, make TCF-ether desirable for fluorescent imaging because of differentiating signals from the excitation light source. Lastly, TCF-ether has been successfully applied to the detection of CO in H9C2 cells.
Collapse
Affiliation(s)
- Yingxu Wu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (Y.W.); (X.D.)
| | - Xiaojing Deng
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (Y.W.); (X.D.)
| | - Lan Ye
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China;
| | - Wei Zhang
- Department of Spine Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China;
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China;
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (Y.W.); (X.D.)
| |
Collapse
|
13
|
Yan L, Yang H, Zhang S, Zhou C, Lei C. A Critical Review on Organic Small Fluorescent Probes for Monitoring Carbon Monoxide in Biology. Crit Rev Anal Chem 2022; 53:1792-1806. [PMID: 35238724 DOI: 10.1080/10408347.2022.2042670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Endogenous carbon monoxide (CO) is an important intracellular gas messenger that is intimately involved in many physiological and pathological processes. The abnormal concentration of CO in living organisms can cause many diseases. Therefore, it is of great significance to monitor CO in biological samples. Fluorescent probe technology provides an effective and convenient method for CO monitoring, with the advantages of high selectivity and sensitivity, fast response time and in situ fluorescence imaging in biological tissues, which is favored by the majority of researchers. In this paper, the research progress of CO fluorescent probes since 2018 is reviewed, and the design, detection mechanism and biological application of the related fluorescent probes are summarized. And the relationship between the structure and performance of the probes is discussed. Furthermore, the development trend and application prospect of CO fluorescent probes are prospected.
Collapse
Affiliation(s)
- Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, PR China
| | - Hong Yang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, PR China
| | - Shiqing Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, PR China
| | - Cuiping Zhou
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, PR China
| | - Chenghong Lei
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, PR China
| |
Collapse
|
14
|
Cai Y, Liu C, Lei Z, Wang Z, Bian Y, He S, Zeng X. Novel lysosome-targeted fluorescent molecular rotors based on a cyanine-like modular system and their application in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120404. [PMID: 34562859 DOI: 10.1016/j.saa.2021.120404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Two novel fluorescence molecular rotors DpIn and NaIn were designed and synthesized involving of indolium units linked with meta-diphenol or ortha-naphthalenediol moiety, respectively. They underwent intramolecular charge transfer to form a cyanine-like modular system at a physiological pH. In glycerol aqueous solutions, the probe DpIn exhibited NIR strong emission (3-fold) at ca. 700 nm, while the probe NaIn displayed a turn-on emission (8-fold) with a larger Stokes shift (⊿λ ≈ 97 nm). The HeLa cell imaging experiments indicated probe DpIn and NaIn both exhibited excellent selectivity for staining intracellular lysosomes instead of mitochondria. 1H NMR spectra revealed that more electrons were accumulated around benzene ring of indolium groups, which could be the evidence for its basic character leading to the lysosomes targeted staining. Furthermore, the probe NaIn proved to be an ideal lysosome-targeting tracer for monitor the changes of viscosity caused by stimuli in living cells.
Collapse
Affiliation(s)
- Yiping Cai
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhaoxia Lei
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhiming Wang
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yaye Bian
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
15
|
Xiao P, Guo D, Yan L, Xu H, Ma Y, Liu J, Yang J, Sun W, Zhang B. A PEGylated water-soluble fluorescent and colorimetric probe for carbon monoxide detection. Analyst 2022; 147:1798-1802. [DOI: 10.1039/d2an00118g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A PEGylated water-soluble CO probe is synthesized, achieving the detection of CO with high intensity color change and fluorescence enhancement.
Collapse
Affiliation(s)
- Peng Xiao
- State Grid Jiangsu Electric Power Co., Ltd, Research Institute, Nanjing, 211103, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215213, China
| | - Dongliang Guo
- State Grid Jiangsu Electric Power Co., Ltd, Research Institute, Nanjing, 211103, China
| | - Liting Yan
- College of Medical Laboratory, Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Hu Xu
- College of Medical Laboratory, Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yong Ma
- State Grid Jiangsu Electric Power Co., Ltd, Research Institute, Nanjing, 211103, China
| | - Jianjun Liu
- State Grid Jiangsu Electric Power Co., Ltd, Research Institute, Nanjing, 211103, China
| | - Jinggang Yang
- State Grid Jiangsu Electric Power Co., Ltd, Research Institute, Nanjing, 211103, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Boyu Zhang
- College of Medical Laboratory, Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
16
|
A new naphthalimide-Pd(II) complex as a light-up fluorescent chemosensor for selective detection of carbon monoxide in aqueous medium. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Du F, Qu Y, Li M, Tan X. Mitochondria-targetable ratiometric fluorescence probe for carbon monoxide based on naphthalimide derivatives. Anal Bioanal Chem 2021; 413:1395-1403. [PMID: 33404745 DOI: 10.1007/s00216-020-03103-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/28/2023]
Abstract
The design of ratiometric probes for imaging of carbon monoxide (CO) in subcellular organelles is critical to elucidate its biological and pathological functions. In this work, we establish a ratiometric fluorescent probe (Mito-NIB-CO) for imaging of CO in mitochondria. The mitochondria-targeting unit (triphenylphosphonium moiety) and CO-responsive unit (allyl ether moiety) are covalently linking into the single molecule (Mito-NIB-CO) to achieve the multifunctional effect. Upon being treated with CO, Mito-NIB-CO underwent the cleavage of allyl ether element in the presence of PdCl2, resulting in the structural and spectral conversion. This characteristic afforded Mito-NIB-CO to be a ratiometric probe for CO with two fluorescent emission bands. Additionally, the probe Mito-NIB-CO exhibited other distinct merits, including preeminent selectivity and sensitivity. What's more, profiting from triphenylphosphonium moiety, the probe Mito-NIB-CO can specifically target the mitochondria and realize quantitative detection of exogenous/endogenous CO in mitochondria. Graphical abstract.
Collapse
Affiliation(s)
- Fangkai Du
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008, People's Republic of China.
| | - Yunting Qu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008, People's Republic of China
| | - Mengru Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008, People's Republic of China
| | - Xuecai Tan
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008, People's Republic of China.
| |
Collapse
|