1
|
Chen K, Shen H, Hu Y, Liu J, Guo K, Wang Z, Huang Q, Zhang Y. Tandem construction of flavone-bridged conjugated porous polymers for photosynthesis of 2,3-dihydrobenzofurans. Chem Commun (Camb) 2025. [PMID: 39876678 DOI: 10.1039/d4cc06631f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Conjugated porous polymers bearing flavone moieties (FL-CPPs) were synthesized via a tandem approach. The carbonylative Sonogashira coupling in tandem with cyclization guided the assembling of building blocks with the accompanied production of flavone skeletons. The FL-CPPs were proved to be efficient metal-free photocatalysts for the [3+2] cycloaddition of phenols with olefins under the irradiation of visible-light.
Collapse
Affiliation(s)
- Kuan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Hailong Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Yansong Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Jiyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Kaixuan Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zengxiang Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Qing Huang
- PetroChina Lanzhou Lubricating Oil R & D Institute, Lanzhou, Gansu 730060, China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| |
Collapse
|
2
|
Liu J, Zhu Y, Li S, Hu Y, Chen K, Li T, Zhang Y. Benzothiadiazole-Based Ordered Mesoporous Polymer as a Versatile, Metal-Free Heterogeneous Photocatalyst. Chemistry 2024; 30:e202402040. [PMID: 39007169 DOI: 10.1002/chem.202402040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Visible-light active heterogeneous organophotocatalysts have recently gained considerable interest in organic synthetic community. Ordered mesoporous polymers (OMPs) are highly promising as heterogeneous alternative to traditional precious metal/organic dyes-based photocatalysts. Herein, we report the preparation of a benzothiadiazole functionalized OMPs (BT-MPs) through a "bottom-up" strategy. High ordered periodic porosity, large surface area, excellent stability and rational energy-band structures guarantee the high catalytic activity of BT-MPs. As a result, at least six conversions, e. g., the [3+2] cycloaddition of phenols with olefins, the selective oxidation of sulfides, the C-3 thiocyanation of indole and the aminothiocyanation of β-keto ester, could be promoted smoothly by BT-MPs. In addition, BT-MPs was readily recovered with well maintaining its photocatalytic activity and could be reused for at least eight times. This study highlights the potential of exploiting photoactive OMPs as recyclable, robust and metal-free heterogeneous photocatalysts.
Collapse
Affiliation(s)
- Jiyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yin Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Shengyu Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yansong Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Kuan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Tingyan Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
3
|
Yao XR, Jia MZ, Miao XL, Yu SK, Chen YR, Pan JQ, Zhang J. Photocatalyzed Oxidative Tandem Reaction Mediated by Bipyridinium for Multifunctional Derivatization of Alcohols. CHEMSUSCHEM 2024; 17:e202301911. [PMID: 38477175 DOI: 10.1002/cssc.202301911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
The multifunctional derivatization of alcohols has been achieved by the bipyridinium-based conjugated small molecule photocatalysts with redox center and Lewis acid site. Besides exhibiting high activity in the selective generation of aldehydes/ketones, acids from alcohols through solvent modulation, this system renders the first selective synthesis of esters via an attractive cross-coupling pattern, whose reaction route is significantly different from the traditional condensation of alcohols and acids or esterification from hemiacetals. Following the oxidization of alcohol to aldehyde via bipyridinium-mediated electron and energy transfer, the Lewis acid site of bipyridinium then activates the aldehyde and methanol to obtain the acetal, which further reacts with methanol to generate ester. This method not only demonstrates a clear advantage of bipyridinium in diverse catalytic activities, but also paves the way for designing efficient multifunctional small molecule photocatalysts. This metal- and additive-free photocatalytic esterification reaction marks a significant advancement towards a more environmentally friendly, cost-effective and green sustainable approach, attributed to the utilization of renewable substrate alcohol and the abundant, low-cost air as the oxidant. The mildness of this esterification reaction condition provides a more suitable alternative for large-scale industrial production of esters.
Collapse
Affiliation(s)
- Xin-Rong Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Meng-Ze Jia
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Xiao-Li Miao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Shi-Kai Yu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Yun-Rui Chen
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jia-Qi Pan
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jie Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
4
|
She Y, Chen X, Wang M, Liu A, Wang X, Gao D, Hu K, Hu M. Heterogeneous solvent-metal-free aerobic oxidation of alcohol under ambient conditions catalyzed by TEMPO-functionalized porous poly(ionic liquid)s. RSC Adv 2024; 14:20199-20209. [PMID: 38919279 PMCID: PMC11196979 DOI: 10.1039/d4ra02241f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/11/2024] [Indexed: 06/27/2024] Open
Abstract
Heterogeneous solvent-metal-free aerobic oxidation of alcohols under ambient conditions is interesting but remains a significant challenge. Herein, a series of porous TEMPO-functionalized poly(ionic liquid)s (TEMPO-PILs) featuring a pure polycationic framework were successfully developed through the free radical polymerization of the ionic liquid 3-(2-chloroacetic acid-2,2,6,6-tetramethyl-1-oxo-4-piperidyl)-1-vinylimidazolium chloride and bis-vinylimidazolium bromide salt. Characterizations revealed that the obtained TEMPO-PILs possessed a high TEMPO density, abundant bromide ions, and a tunable porous structure, which enabled them to serve as solvent-free heterogeneous organocatalysts for the metal-free aerobic oxidation of benzyl alcohol under ambient conditions, exhibiting high catalytic activity and stable recyclability. A high yield of 99% coupled with a turnover frequency (TOF) of 13.3 h-1 was obtainable, which is higher than most of the reported TEMPO-based heterogeneous catalysts, even superior to homogeneous TEMPO-functionalized ionic liquids. Furthermore, a broad range of alcohols were effectively converted into their corresponding ketones and aldehydes. A possible reaction mechanism is proposed for understanding the catalytic oxidation behavior, indicative of the synergistic effect of TEMPO moieties and bromide ions.
Collapse
Affiliation(s)
- Yaping She
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Xinyu Chen
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Mengya Wang
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Anqiu Liu
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Xiaochen Wang
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Daming Gao
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Kunhong Hu
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Miao Hu
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| |
Collapse
|
5
|
Zhang Y, Yang X, Li L, Hu Y, Wang S. One-step assembly of a MacMillan catalyst-based phenolic-type polymer. Org Biomol Chem 2023; 21:4465-4472. [PMID: 37191132 DOI: 10.1039/d3ob00624g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We report herein a "bottom-up" approach for the one-step assembly of a MacMillan catalyst-based phenolic-type polymer (Mac-CP). The resulting self-supported polymeric organocatalyst possesses homogeneously distributed and highly concentrated catalytic sites. Furthermore, Mac-CP is soluble in CH3CN but insoluble in hexane. This unique property can be used to employ the polymer as an efficient catalyst in homogeneous organocatalysis and heterogeneous recycling. As a result, Mac-CP possesses comparable catalytic activity and enantioselectivity to its homogeneous counterpart in the asymmetric Diels-Alder reaction (95% yield, 93% enantiomeric excess (ee) for endo and 92% ee for exo).
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Xiaorong Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China
| | - Liqi Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Yansong Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Shutao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| |
Collapse
|
6
|
Pandey M, Tsunoji N, Kubota Y, Bandyopadhyay M. Amine and Sulfonic Acid Anchored Porous Silica as Recyclable Heterogeneous Catalysts for Ring‐Opening of Oxiranes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Madhu Pandey
- Dpartment of Basic Sciences Institute of Infrastructure, Technology Research and Management, Maninagar Ahmedabad 380026 Gujarat India
| | - Nao Tsunoji
- Graduate School of Advanced Science and Engineering Hiroshima University Higashi-Hiroshima 739-852 Japan
| | - Yoshihiro Kubota
- Department of Material Science & Chemical Engineering Yokohama National University Yokohama Japan
| | - Mahuya Bandyopadhyay
- Dpartment of Basic Sciences Institute of Infrastructure, Technology Research and Management, Maninagar Ahmedabad 380026 Gujarat India
| |
Collapse
|