1
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
2
|
Wang L, Wang L, Ma J. Highly sensitive and specific detection of Ni 2+ using a novel fluorometric probe in the DMSO-H 2O system. Photochem Photobiol Sci 2024; 23:527-537. [PMID: 38446402 DOI: 10.1007/s43630-024-00537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/15/2024] [Indexed: 03/07/2024]
Abstract
The rapid detection of Ni ions has important research and application value. This paper presents a novel specific turn-off fluorescence probe PCTMP-FS for detecting Ni2+ ions. The carbazole-based compound PCTMP is first synthesized via a two-step reaction. PCTMP-FS comprises PCTMP dispersed into a DMSO-H2O (fw = 30% v/v) mixed solvent. The probe demonstrates prominent selectivity and anti-interference abilities for detecting Ni2+ with a limit of detection (LOD) of 0.233 μM. The probe exhibits good applicability over a wide range of acidities. The detecting mechanism of the probe is due to the complex formed by PCTMP and Ni2+ (2:1), which destroys intramolecular charge transfer in the compound. The probe has good repeatability and demonstrates excellent stability and sensitivity for the detection of Ni2+ in real water samples.
Collapse
Affiliation(s)
- Luyue Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Liqiang Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Jie Ma
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China.
| |
Collapse
|
3
|
Yan Q, Yao X, Li Y, Zhong K, Tang L, Yan X. A red fluorescence probe for reversible detection of HSO 3-/H 2O 2 and its application in food samples and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122882. [PMID: 37207570 DOI: 10.1016/j.saa.2023.122882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Reducing agent SO2 and oxidant H2O2 are two essential substances in cells, and the balance between them is closely related to the survival of cells. SO2 derivative HSO3- is often used as food additive. Therefore, simultaneous detection of SO2 and H2O2 is of great significance in biology and food safety. In this work, we successfully developed a mitochondria-targeted red fluorescent probe (HBTI), which has excellent selectivity, high sensitivity and large Stokes shift (202 nm). HBTI and HSO3-/SO32- undergo Michael addition on the unsaturated C=C bond, and the addition product (HBTI-HSO3-) can react with H2O2 to restore the conjugated structure. Fluorescence changes from red to non-emissive and then restores to red, and can be detected quickly and visually. In addition, HBTI has been successfully targeted mitochondria, and achieved dynamic reversible response to SO2/H2O2 in living cells, and has been successfully applied to detect SO2 in food samples.
Collapse
Affiliation(s)
- Qi Yan
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Xinya Yao
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Ying Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Keli Zhong
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Lijun Tang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China; Department of Chemistry, National Demonstration Center for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Xiaomei Yan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
4
|
Zhang L, Wang Y, Wang Y, Guo M, Li Z, Jin X, Du H. Electrochemical H 2O 2 sensor based on a Au nanoflower-graphene composite for anticancer drug evaluation. Talanta 2023; 261:124600. [PMID: 37216890 DOI: 10.1016/j.talanta.2023.124600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
Reliable H2O2 sensors for in situ cellular monitoring under drug stimulation can be developed as a powerful and versatile tool for drug evaluation. Herein, a novel electrochemical biosensor capable of detecting and quantifying H2O2 was fabricated by graphene and shape-controlled gold nanostructures. With the help of polyelectrolytes, gold exhibited hierarchical flower-like nanostructures. This kind of nanozyme material exhibited a prominent electrochemical response for H2O2. Electrocatalytic activity for H2O2 reduction with high sensitivity (5.07◊10-4 mA μmol L-1 cm-2) and good detection capability (the lowest detection limit is 4.5 μmol L-1 (S/N = 3)) were achieved. This electrochemical biosensor was successfully used to measure the concentration of H2O2 released from HepG2 hepatoma cells. Ascorbic acid (AA) and Camellia nitidissima Chi saponins (CNCS) were selected as model drugs, and their anticancer activities were compared by in situ monitoring of H2O2. Interestingly, the electrochemical sensor showed remarkable sensitivity, accuracy, and rapidity compared with the traditional enzymatic detection kit. In brief, the as-synthesized nanostructured H2O2 sensors can be applied to assess the antitumor properties of candidate drugs and inspire developments for personalized health care monitoring and cancer treatment.
Collapse
Affiliation(s)
- Lin Zhang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Yu Wang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yuqiao Wang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Meiling Guo
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhouyuan Li
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xianbo Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Hongzhi Du
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
5
|
Li Y, Huang Y, Sun X, Zhong K, Tang L. An AIE mechanism-based fluorescent probe for relay recognition of HSO 3-/H 2O 2 and its application in food detection and bioimaging. Talanta 2023; 258:124412. [PMID: 36907164 DOI: 10.1016/j.talanta.2023.124412] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
In view of the important physiological role of HSO3- and H2O2, it is of great significance to develop fluorescent probes to detect HSO3- and H2O2 in aqueous medium. We herein report a new fluorescent probe (E)-3-(2-(4-(1,2,2-triphenylvinyl)styryl)benzo [d]thiazol-3-ium-3-yl)propane-1-sulfonate (TPE-y) possessing benzothiazolium salt based on tetraphenylethene (TPE) moiety with aggregation-induced emission (AIE) characteristics. TPE-y can sequentially recognize HSO3- and H2O2 through colorimetric and fluorescence dual-channel response in HEPES (pH = 7.4, 1% DMSO) buffer solution, and exhibits high sensitivity and selectivity, a large Stokes shift (189 nm), as well as a wide applicable pH range. The detection limits of TPE-y and TPE-y-HSO3 for HSO3- and H2O2 are 3.52 μM and 0.15 μM, respectively. The recognition mechanism is verified by 1H NMR and HRMS methods. Furthermore, TPE-y can detect HSO3- in sugar samples, and can image exogenous HSO3- and H2O2 in living MCF-7 cells. TPE-y can relay detect HSO3- and H2O2, which is of great significance to maintain the redox balance in organisms.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Yanru Huang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Xiaofei Sun
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - Keli Zhong
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Lijun Tang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.
| |
Collapse
|
6
|
Mao S, Ding G, Wang K, Wang Q, Gao Y, Liang X, Meng D, Wang J, Wang X. A novel mitochondria-targeted triphenylamine-based fluorescent chemo-sensors for fast detection of H2O2 in living cells and its imaging application. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Li T, Chen X, Wang K, Hu Z. Small-Molecule Fluorescent Probe for Detection of Sulfite. Pharmaceuticals (Basel) 2022; 15:1326. [PMID: 36355496 PMCID: PMC9699022 DOI: 10.3390/ph15111326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 04/20/2024] Open
Abstract
Sulfite is widely used as an antioxidant additive and preservative in food and beverages. Abnormal levels of sulfite in the body is related to a variety of diseases. There are strict rules for sulfite intake. Therefore, to monitor the sulfite level in physiological and pathological events, there is in urgent need to develop a rapid, accurate, sensitive, and non-invasive approach, which can also be of great significance for the improvement of the corresponding clinical diagnosis. With the development of fluorescent probes, many advantages of fluorescent probes for sulfite detection, such as real time imaging, simple operation, economy, fast response, non-invasive, and so on, have been gradually highlighted. In this review, we enumerated almost all the sulfite fluorescent probes over nearly a decade and summarized their respective characteristics, in order to provide a unified platform for their standardized evaluation. Meanwhile, we tried to systematically review the research progress of sulfite small-molecule fluorescent probes. Logically, we focused on the structures, reaction mechanisms, and applications of sulfite fluorescent probes. We hope that this review will be helpful for the investigators who are interested in sulfite-associated biological procedures.
Collapse
Affiliation(s)
| | | | - Kai Wang
- Medical Laboratory of Wuxi Children’s Hospital, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Qingyang Road 299, Wuxi 214023, China
| | - Zhigang Hu
- Medical Laboratory of Wuxi Children’s Hospital, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Qingyang Road 299, Wuxi 214023, China
| |
Collapse
|
8
|
Wei W, Liu W, Zhang H, Li Z, Yu M. A novel near-infrared fluorescent probe for the detection of sulfur dioxide derivatives and its application in biological imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj01414a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SO2 plays an important role in our life and is also associated with many diseases, so it is a double-edged sword. Therefore, it is necessary to develop a probe for...
Collapse
|
9
|
Wang X, Li M, Duan T, Zou Y, Zhou X. A dual responsive fluorescent probe for selective detection of cysteine and bisulfite and its application in bioimaging. RSC Adv 2021; 12:874-877. [PMID: 35425127 PMCID: PMC8978911 DOI: 10.1039/d1ra08317a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
A coumarin-based dual responsive fluorescent probe with a simple structure was developed for the detection of Cys and HSO3 -. Under simulated physiological conditions, Cou-F displayed an on-off fluorescence response to Cys at 521 nm and an off-on fluorescence response to HSO3 - at 500 nm. Furthermore, Cou-F had the advantages of high sensitivity, strong specificity and rapid response. The detection limits of Cou-F toward Cys and HSO3 - were 0.54 μM and 0.65 μM, respectively. Cou-F enabled high selective responses to Cys and HSO3 - over other biologically related species. The response times of Cou-F toward Cys and HSO3 - were 80 s and 100 s. The fluorescence imaging of Cys and HSO3 - was achieved in living RAW246.7 cells.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University Haikou 570102 China
| | - Mingshun Li
- School of Pharmaceutical Sciences, Southern Medical University Guangzhou 510515 China
| | - Tingting Duan
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University Haikou 570102 China
| | - Yuxia Zou
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University Haikou 570102 China
| | - Xuejun Zhou
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University Haikou 570102 China
| |
Collapse
|