1
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
2
|
Mondal S, Mandal S, Mondal S, Midya SP, Ghosh P. Photocatalytic decarboxylation of free carboxylic acids and their functionalization. Chem Commun (Camb) 2024; 60:9645-9658. [PMID: 39120531 DOI: 10.1039/d4cc03189j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Visible light mediated decarboxylative functionalization of carboxylic acids and their derivatives has recently emerged as a novel and powerful toolkit for small molecule activation in diverse carbon-carbon and carbon-hetero bond forming reactions. Naturally abundant highly functionalized bench-stable carboxylic acid analogs have been employed as promising alternatives to non-trivial organometallic reagents for mild and eco-benign synthetic transformation with traceless CO2 by-products. In this highlight article, we focus on the development of various photodecarboxylative functionalization strategies along with intra/inter-molecular cyclization via concerted single electron transfer (SET) or energy transfer (ET) pathways. Moreover, widely explored carboxylic acids are systematically classified here into four categories; i.e., α-keto, aliphatic, α,β-unsaturated, and aromatic analogs for a concise overview to the readership. The association of decarboxylative radical species with coupling partners to construct C-C and C-N/O/S/P/X bonds for each analogous acid has been presented in brief.
Collapse
Affiliation(s)
- Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Subham Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Siba P Midya
- Department of Chemistry, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
3
|
Gao S, Cai M, Wang X, Jiang D, Lin P, Dai L. Metal-free synthesis of 1,1-dimethyl-2,2,2-trifluoroethyl substituted quinazolinones via tandem radical cyclization of quinazolin-4(3 H)-ones with 3,3,3-trifluoro-2,2-dimethylpropanoic acid. Org Biomol Chem 2024; 22:6376-6384. [PMID: 39046342 DOI: 10.1039/d4ob00914b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A metal-free (NH4)2S2O8-mediated decarboxylative trifluoromethylation reaction of alkenes with 3,3,3-trifluoro-2,2-dimethylpropionic acid has been proposed. This method offers a novel route for the direct synthesis of a series of CMe2CF3-containing quinazolinones from basic chemical raw materials. The reaction mechanism was studied by a radical trapping test and DFT methods, verifying an oxidation-triggered cascade process promoted by the CMe2CF3 radicals. This strategy provides advantages such as high yield, wide substrate compatibility, and high atom economy.
Collapse
Affiliation(s)
- Shenyuan Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Menglu Cai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Xiaozhong Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Dapeng Jiang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Pen Lin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Liyan Dai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
4
|
Huang J, Ban C, Qin J, Xu J, Gu Y, Wei L, Yuan JM, Huang G. Visible-light promoted radical cascade cyclization of 3-allyl-2-arylquinazolinones for the synthesis of phosphorylated dihydroisoquinolino[1,2- b]quinazolinones. Chem Commun (Camb) 2024; 60:8119-8122. [PMID: 38995155 DOI: 10.1039/d4cc02915a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A novel visible-light promoted metal-free radical cascade cyclization reaction has been developed with 3-allyl-2-arylquinazolinones as a new class of radical acceptor. This photocatalytic protocol represents an efficient approach to construct phosphorylated dihydroisoquinolino[1,2-b]quinazolinones featuring mild conditions, broad substrate scope, and gram-scale synthesis.
Collapse
Affiliation(s)
- Jun Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Caijin Ban
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Jiangping Qin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Jiali Xu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Yunqiong Gu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, P. R. China
| | - Liang Wei
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Jing-Mei Yuan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, P. R. China
| | - Guobao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, P. R. China
| |
Collapse
|
5
|
Zhang YY, Zhang Y, Xue XS, Qing FL. Reversal of the Regioselectivity of Iron-Promoted Hydrogenation and Hydrohalogenation of gem-Difluoroalkenes. Angew Chem Int Ed Engl 2024; 63:e202406324. [PMID: 38637292 DOI: 10.1002/anie.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
The reaction regioselectivity of gem-difluoroalkenes is dependent on the intrinsic polarity. Thus, the reversal of the regioselectivity of the addition reaction of gem-difluoroalkenes remains a formidable challenge. Herein, we described an unprecedented reversal of regioselectivity of hydrogen atom transfer (HAT) to gem-difluoroalkenes triggered by Fe-H species for the formation of difluoroalkyl radicals. Hydrogenation of the in situ generated radicals gave difluoromethylated products. Mechanism experiments and theoretical studies revealed that the kinetic effect of the irreversible HAT process resulted in the reversal of the regioselectivity of this scenario, leading to the formation of a less stable α-difluoroalkyl radical regioisomer. On basis of this new reaction of gem-difluoroalkene, the iron-promoted hydrohalogenation of gem-difluoroalkenes for the efficient synthesis of aliphatic chlorodifluoromethyl-, bromodifluoromethyl- and iododifluoromethyl-containing compounds was developed. Particularly, this novel hydrohalogenation of gem-difluoroalkenes provided an effect and large-scale access to various iododifluoromethylated compounds of high value for synthetic application.
Collapse
Affiliation(s)
- Yu-Yang Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Yuchen Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
6
|
Wu X, Liu L, Xiang C, Yu JT, Pan C. Photocatalytic cyclization of 3-(2-isocyanophenyl)quinazolin-4(3 H)-ones for the construction of quinoxalino[2,1- b]quinazolinones. Chem Commun (Camb) 2024; 60:2556-2559. [PMID: 38345179 DOI: 10.1039/d4cc00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A new kind of building unit, 3-(2-isocyanophenyl)quinazolin-4(3H)-ones, was designed and synthesized for the construction of novel quinoxalino[2,1-b]quinazolinones. The radical cyclization of 3-(2-isocyanophenyl)quinazolin-4(3H)-ones with ethers afforded ether-substituted tetracyclic quinoxalino[2,1-b]quinazolinones under photocatalytic and metal-free conditions. In the process, the isocyano accepts a carbon radical to give an imidoyl radical, which adds to the electron-deficient CN bond in quinazolin-4(3H)-one.
Collapse
Affiliation(s)
- Xian Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Lingli Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Chengli Xiang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
7
|
Tang JJ, Zhao MY, Lin YJ, Yang LH, Xie LY. Persulfate-Promoted Carbamoylation/Cyclization of Alkenes: Synthesis of Amide-Containing Quinazolinones. Molecules 2024; 29:997. [PMID: 38474508 DOI: 10.3390/molecules29050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The incorporation of amide groups into biologically active molecules has been proven to be an efficient strategy for drug design and discovery. In this study, we present a simple and practical method for the synthesis of amide-containing quinazolin-4(3H)-ones under transition-metal-free conditions. This is achieved through a carbamoyl-radical-triggered cascade cyclization of N3-alkenyl-tethered quinazolinones. Notably, the carbamoyl radical is generated in situ from the oxidative decarboxylative process of oxamic acids in the presence of (NH4)2S2O8.
Collapse
Affiliation(s)
- Jia-Jun Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Meng-Yang Zhao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Ying-Jun Lin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Li-Hua Yang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
8
|
Zong ZM, Zhang L, Li GP, Wang W, Zhao XJ, He Y. Electrochemical-Induced C-N Bond Formation: A New Method to Synthesis ( Z)-Quinazolinone Oximes Using Primary Amines and Quinazolin-4(3 H)-one. Org Lett 2024; 26:1271-1276. [PMID: 38323795 DOI: 10.1021/acs.orglett.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A novel and highly selective electrochemical method for the synthesis of diverse quinazolinone oximes via direct electrooxidation of primary amines/C(sp2)-H functionalization of oximes has been developed. The reaction is conducted in an undivided cell under constant current conditions and is oxidant-free, open-air, and eco-friendly. Notably, the protocol shows good functional group tolerance, providing versatile quinazolinone oximes in good yields. Moreover, the mechanism is investigated through control experiments and cyclic voltammogram (CV) experiments.
Collapse
Affiliation(s)
- Zhi-Min Zong
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Lizhu Zhang
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Gan-Peng Li
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Wei Wang
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| |
Collapse
|
9
|
Vaskevych A, Dekhtyar M, Vovk M. Cyclizations of Alkenyl(Alkynyl)-Functionalized Quinazolinones and their Heteroanalogues: A Powerful Strategy for the Construction of Polyheterocyclic Structures. CHEM REC 2024; 24:e202300255. [PMID: 37830463 DOI: 10.1002/tcr.202300255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Quinazolin-4-one, its heteroanalogues, and derivatives represent an outstandingly important class of compounds in modern organic, medicinal, and pharmaceutical chemistry, as these molecular structures are noted for their wide synthetic and pharmacological potential. In the last years, ever-increasing research attention has been paid to quinazolinone derivatives bearing alkenyl and alkynyl substituents on the pyrimidinone nucleus. The original structural combination of synthetically powerful endocyclic amidine (or amidine-related) and exocyclic unsaturated moieties provides a driving force for cyclizations, which offer an efficient toolkit to construct a variety of fused pyrimidine systems with saturated N- and N,S-heterocycles. In this connection, the present review article is mainly aimed at systematic coverage of the progress in using alkenyl(alkynyl)quinazolinones and their heteroanalogues as convenient bifunctional substrates for regioselective annulation of small- and medium-sized heterocyclic nuclei. Much attention is paid to elucidating the structural and electronic effects of reagents on the regio- and stereoselectivity of the cyclizations as well as to clarifying the relevant reaction mechanisms.
Collapse
Affiliation(s)
- Alla Vaskevych
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academician Kukhar str., 5, Kyiv 02660, Ukraine
| | - Maryna Dekhtyar
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academician Kukhar str., 5, Kyiv, 02660, Ukraine
| | - Mykhailo Vovk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academician Kukhar str., 5, Kyiv, 02660, Ukraine
| |
Collapse
|
10
|
Zhang Y, Liu Y, Zhang Y, Zhu Y, Zhou N, Zhao X, Lu K. Photochemical Difluoromethylation of Quinoxalin-2(1 H)-ones with Difluoroacetic Anhydride and Pyridine N-Oxide. J Org Chem 2023. [PMID: 38154054 DOI: 10.1021/acs.joc.3c02357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
A novel photochemical difluoromethylation of quinoxalin-2(1H)-ones under catalyst-free conditions was achieved with difluoroacetic anhydride and pyridine N-oxide. The green and mild reaction conditions as well as readily attainable difluoroacetic anhydride provide a useful protocol to prepare C3-difluoromethylated quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Ying Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China
| | - Yu Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China
| | - Yi Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China
| | - Yaqing Zhu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China
| | - Ningning Zhou
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China
| | - Xia Zhao
- College of Chemistry, TianJin Key Laboratory of Structure and Performance for Functional Molecules, TianJin Normal University, TianJin 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China
| |
Collapse
|
11
|
Lin D, Coe M, Krishnamurti V, Ispizua-Rodriguez X, Surya Prakash GK. Recent Advances in Visible Light-Mediated Radical Fluoro-alkylation, -alkoxylation, -alkylthiolation, -alkylselenolation, and -alkylamination. CHEM REC 2023; 23:e202300104. [PMID: 37212421 DOI: 10.1002/tcr.202300104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Indexed: 05/23/2023]
Abstract
In the last few years, many reagents and protocols have been developed to allow for the efficient fluorofunctionalization of a diverse set of scaffolds ranging from alkanes, alkenes, alkynes, and (hetero)arenes. The concomitant rise of organofluorine chemistry and visible light-mediated synthesis have synergistically expanded the fields and have mutually benefitted from developments in both fields. In this context, visible light driven formations of radicals containing fluorine have been a major focus for the discovery of new bioactive compounds. This review details the recent advances and progress made in visible light-mediated fluoroalkylation and heteroatom centered radical generation.
Collapse
Affiliation(s)
- Daniel Lin
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Matthew Coe
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Vinayak Krishnamurti
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Xanath Ispizua-Rodriguez
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| |
Collapse
|
12
|
Yang Z, Wu X, Zhang J, Yu JT, Pan C. Metal-Free Photoinduced Hydrocyclization of Unactivated Alkenes toward Ring-Fused Quinazolin-4(3 H)-ones via Intermolecular Hydrogen Atom Transfer. Org Lett 2023; 25:1683-1688. [PMID: 36883803 DOI: 10.1021/acs.orglett.3c00329] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A visible-light-induced hydrocyclization of unactivated alkenes was developed using 3CzClIPN as the photocatalyst to generate substituted α-methyldeoxyvasicinones and α-methylmackinazolinones in moderate to good yields. An intermolecular hydrogen atom transfer with THF as the hydrogen source was involved. Mechanism studies indicated that the intramolecular addition of the in situ formed aminal radical to the unactivated alkene generated the polycyclic quinazolinone.
Collapse
Affiliation(s)
- Zixian Yang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Xian Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jie Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Changduo Pan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.,School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
13
|
Ramkumar N, Baumane L, Zacs D, Veliks J. Merging Copper(I) Photoredox Catalysis and Iodine(III) Chemistry for the Oxy-monofluoromethylation of Alkenes. Angew Chem Int Ed Engl 2023; 62:e202219027. [PMID: 36692216 DOI: 10.1002/anie.202219027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
A simple process for the oxy-monofluoromethylation of alkenes is described. In combination with visible-light copper(I) photoredox catalysis, an easily accessible iodine(III) reagent containing monofluoroacetoxy ligands serves as a powerful source of a monofluoromethyl (CH2 F) radical, enabling the step economical synthesis of γ-fluoro-acetates from a broad range of olefinic substrates under mild conditions. Applications to late-stage diversification of alkenes derived from complex molecules, amino acids and the synthesis of fluoromethylated heterocycles are also demonstrated.
Collapse
Affiliation(s)
- Nagarajan Ramkumar
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006, Riga, Latvia
| | - Larisa Baumane
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006, Riga, Latvia
| | - Dzintars Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076, Riga, Latvia
| | - Janis Veliks
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006, Riga, Latvia
| |
Collapse
|
14
|
Paul S, Das S, Choudhuri T, Sikdar P, Bagdi AK. Visible-Light-Induced Regioselective C-H Sulfenylation of Pyrazolo[1,5- a]pyrimidines via Cross-Dehydrogenative Coupling. J Org Chem 2023; 88:4187-4198. [PMID: 36916032 DOI: 10.1021/acs.joc.2c02665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A visible-light-induced cross-dehydrogenative methodology has been developed for the regioselective sulfenylation of pyrazolo[1,5-a]pyrimidine derivatives. Rose bengal, blue LEDs, KI, K2S2O8, and DMSO are all essential for this photocatalytic transformation. The protocol is applicable for the synthesis of a library of 3-(aryl/heteroaryl thio)pyrazolo[1,5-a]pyrimidine derivatives with broad functionalities. The selectivity and scalability of the methodology have been also demonstrated. Moreover, the efficiency of this strategy for sulfenylation of pyrazoles, indole, imidazoheterocycles, and 4-hydroxy coumarin has been proven. The mechanistic investigation revealed the radical-based mechanism and formation of diaryl disulfide as a key intermediate for this cross-dehydrogenative coupling reaction.
Collapse
Affiliation(s)
- Suvam Paul
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Sourav Das
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | | | - Papiya Sikdar
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Avik Kumar Bagdi
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| |
Collapse
|
15
|
Visible-light-induced controllable α-chlorination of nafimidone derivatives through LMCT excitation of CuCl2. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Liu R, Zhou N, Zhao T, Zhang Y, Wang K, Zhao X, Lu K. Visible-Light-Induced Difluoroalkylation of Alkenes and Alkynes with Fluoro-Containing Hypervalent Iodane (III) Reagents Under Photo-Catalyst-Free Conditions. J Org Chem 2023; 88:483-492. [PMID: 36563003 DOI: 10.1021/acs.joc.2c02488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A visible-light-induced difluoroalkylation of unactivated alkenes by fluoro-containing hypervalent iodine-based difluoroalkylation reagent was achieved for the first time under photo-catalyst-free conditions. Moreover, the same reaction conditions were applicable to the difluoroalkylation of alkynes to give the hydrodifluoroalkylation products in moderate to excellent yields. The readily available reagent, broad substrate scope, and photo-catalyst-free conditions make this protocol an efficient and environmental friendly method for the hydrodifluoroalkylation of alkenes and alkynes.
Collapse
Affiliation(s)
- Ruiyue Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Ningning Zhou
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Tingting Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Ying Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Kun Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| |
Collapse
|
17
|
Visible light induced four component reaction of styrene for the access of thiodifluoroesters. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Long L, Li X, Tu M, Zhang Y, Qiao L, Luo W, Chen Z. Hypervalent iodine( iii) promoted C–H/C–H amination/annulation tandem reactions: synthesis of benzimidazoles from simple anilines and aldehydes. Org Chem Front 2023. [DOI: 10.1039/d2qo01644c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel hypervalent iodine mediated cascade transformation of anilines and aldehydes to benzimidazoles was developed.
Collapse
Affiliation(s)
- Lipeng Long
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China
| | - Xin Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China
| | - Mengshi Tu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China
| | - Yekun Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China
| | - Liang Qiao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjun Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China
| |
Collapse
|
19
|
Gui QW, Teng F, Yu P, Wu YF, Nong ZB, Yang LX, Chen X, Yang TB, He WM. Visible light-induced Z-scheme V2O5/g-C3N4 heterojunction catalyzed cascade reaction of unactivated alkenes. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
20
|
Yu WQ, Xiong BQ, Zhong LJ, Liu Y. Visible-light-promoted radical cascade alkylation/cyclization: access to alkylated indolo/benzoimidazo[2,1- a]isoquinolin-6(5 H)-ones. Org Biomol Chem 2022; 20:9659-9671. [PMID: 36416184 DOI: 10.1039/d2ob01732f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new protocol is herein described for the direct generation of alkylated indolo/benzoimidazo[2,1-a]isoquinolin-6(5H)-one derivatives by using Hantzsch esters as alkylation radical precursors using a photoredox/K2S2O8 system. This oxidative alkylation of active alkenes involves a radical cascade cyclization process and a sequence of Hantzsch ester single electron oxidation, C-C bond cleavage, alkylation, arylation and oxidative deprotonation.
Collapse
Affiliation(s)
- Wen-Qin Yu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
21
|
Yuan JW, Zhang MY, Liu Y, Hu WY, Yang LR, Xiao YM, Diao XQ, Zhang SR, Mao J. Transition-metal-free radical difluorobenzylation/cyclization of unactivated alkenes: access to ArCF 2-substituted ring-fused quinazolinones. Org Biomol Chem 2022; 20:9722-9733. [PMID: 36440712 DOI: 10.1039/d2ob01904c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A mild and efficient transition-metal-free radical difluorobenzylation/cyclization of unactivated alkenes toward the synthesis of difluorobenzylated polycyclic quinazolinone derivatives with easily accessible α,α-difluoroarylacetic acids has been developed. This transformation has the advantages of wide functional group compatibility, a broad substrate scope, and operational simplicity. This methodology provided a highly attractive access to pharmaceutically valuable ArCF2-containing polycyclic quinazolinones.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Mei-Yue Zhang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yan Liu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Wen-Yu Hu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yong-Mei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xiao-Qiong Diao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou 450001, P. R. China
| |
Collapse
|
22
|
Dong DQ, Yang SH, Wu P, Wang JZ, Min LH, Yang H, Zhou MY, Wei ZH, Ding CZ, Wang YL, Gao JH, Wang SJ, Wang ZL. Copper-Catalyzed Difluoroalkylation Reaction. Molecules 2022; 27:molecules27238461. [PMID: 36500553 PMCID: PMC9740754 DOI: 10.3390/molecules27238461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
This review describes recent advances in copper-catalyzed difluoroalkylation reactions. The RCF2 radical is generally proposed in the mechanism of these reactions. At present, various types of copper-catalyzed difluoroalkylation reactions have been realized. According to their characteristics, we classify these difluoroalkylation reactions into three types.
Collapse
Affiliation(s)
- Dao-Qing Dong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shao-Hui Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Pei Wu
- Shandong Academy of Pesticide Sciences, Beiyuan Street, Jinan 250033, China
- Correspondence: (P.W.); (Z.-L.W.)
| | - Jin-Zhi Wang
- Tancheng County Agricultural Technology Popularization Center, Linyi 276100, China
| | - Ling-Hao Min
- Qingdao Zhongda Agritech Co., Ltd., Qingdao 266109, China
| | - Hao Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Meng-Yu Zhou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ze-Hui Wei
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Cai-Zhen Ding
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan-Li Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jia-Hui Gao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shu-Jie Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zu-Li Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (P.W.); (Z.-L.W.)
| |
Collapse
|
23
|
Fast quinazolinone synthesis by combining enzymatic catalysis and photocatalysis. Photochem Photobiol Sci 2022; 22:525-534. [PMID: 36445645 DOI: 10.1007/s43630-022-00332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022]
Abstract
A fast and highly efficient method for the synthesis of functionalized quinazolinones by combining enzymatic catalysis and photocatalysis is reported. The α-Chymotrypsin catalyzed the cyclization of aldehyde and 2-aminobenzamide, which was subsequently followed by White LED-induced oxidation of 2-phenyl-2, 3-dihydroquinazolin-4(1H)-one to obtain quinazolinone. The reaction process was highly efficient with a reaction yield of 99% in just 2 h, and a wide range of quinazolinones could be synthesized. Furthermore, the plausible mechanism was investigated by control experiments and DFT calculations. This protocol provides an alternative synthetic route for the preparation of quinazolinone derivatives.
Collapse
|
24
|
Zhang Y, Ni Q, Pan B, Jiang L, Qiu L. Development of sterically hindered SPOs and enantioselective Ni−Al bimetallic catalyzed C−H cyclization of 4-oxoquinazolines with tethered alkenes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Mao LL, Zhou AX, Zhu XH, Peng H, Quan LX, Wan JP, Yang SD. Visible-Light-Mediated Tandem Difluoromethylation/Cyclization of Alkenyl Aldehydes toward CF 2H-Substituted Chroman-4-one Derivatives. J Org Chem 2022; 87:12414-12423. [PMID: 36007244 DOI: 10.1021/acs.joc.2c01689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and facile visible-light-mediated tandem difluoromethylation/cyclization of alkenyl aldehydes, with easily accessible and air-stable [Ph3PCF2H]+Br- as the difluoromethylation reagent, has been established. A range of CF2H-substituted chroman-4-one skeletons and their derivatives, such as 2,3-dihydroquinolin-4(1H)-ones, chroman, 3,4-dihydronaphthalen-1(2H)-one, 2,3-dihydrobenzofuran, and 2,3-dihydro-1H-inden-1-one, are efficiently produced in moderate to good yields with excellent chemoselectivity under mild reaction conditions.
Collapse
Affiliation(s)
- Liu-Liang Mao
- College of Chemistry and Environment Science, Shangrao Normal University, Shangrao 334001, China
| | - An-Xi Zhou
- College of Chemistry and Environment Science, Shangrao Normal University, Shangrao 334001, China
| | - Xian-Hong Zhu
- College of Chemistry and Environment Science, Shangrao Normal University, Shangrao 334001, China
| | - Huanan Peng
- College of Chemistry and Environment Science, Shangrao Normal University, Shangrao 334001, China
| | - Li-Xia Quan
- College of Chemistry and Environment Science, Shangrao Normal University, Shangrao 334001, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
26
|
Zhou N, Liu R, Zhang C, Wang K, Feng J, Zhao X, Lu K. Photoinduced Three-Component Difluoroalkylation of Quinoxalinones with Alkenes via Difluoroiodane(III) Reagents. Org Lett 2022; 24:3576-3581. [PMID: 35546558 DOI: 10.1021/acs.orglett.2c01358] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An environmentally friendly strategy for the photocatalyzed three-component reaction between quinoxalinones, alkenes, and hypervalent iodine(III) reagents is disclosed. The new designed difluoroiodane(III) reagent shows excellent reactivity, providing a wide range of difluoroalkyl-substituted quinoxaline-2(1H)-ones in moderate to excellent yields under mild conditions. Experimental studies demonstrated that a difluoroalkyl radical intermediate was involved in this reaction.
Collapse
Affiliation(s)
- Ningning Zhou
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Ruiyue Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Chunmeng Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Kun Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Jiaxu Feng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| |
Collapse
|
27
|
Zhou T, Liu R, Wang X, Rui M, Zhao X, Lu K. Visible‐light Induced Ipso‐Difluoromethylation of N‐arylpropiolamides to Synthesize 3‐difluoromethyl Spiro[4.5]trienones. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ting Zhou
- Tianjin University of Science and Technology Chemistry Tianjin CHINA
| | - Ruiyue Liu
- Tianjin University of Science and Technology Chemistry Tianjin CHINA
| | - Xiuxiu Wang
- Tianjin University of Science and Technology Chemistry Tianjin CHINA
| | - Mingyang Rui
- Tianjin University of Science and Technology Chemistry Tianjin CHINA
| | - Xia Zhao
- Tianjin University of Science and Technology Chemistry Tianjin CHINA
| | - Kui Lu
- Tianjin University of Science & Technology Department of Pharmaceutical Engineering No.29, 13th AvenueTianjin Economic and Technological Development Area 300457 Tianjin CHINA
| |
Collapse
|
28
|
Liu H, Yang Z, Yu JT, Pan C. Radical Polychloromethylation/Cyclization of Unactivated Alkenes: Access to Polychloromethyl‑Substituted Ring‐Fused Quinazolinones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Han Liu
- Changzhou University - Wujin Campus CHINA
| | | | | | | |
Collapse
|
29
|
Xiong W, Qin WB, Zhao YS, Fu KZ, Liu GK. Direct C(sp3)−H Difluoromethylation via Radical-Radical Cross-Coupling by Visible-Light Photoredox Catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00192f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the radical-radical cross-coupling strategy for direct difluoromethylation of C(sp3)−H bond is reported. This transformation was readily accomplished under transition metal-free photoredox catalysis in the presence of 3 mol% of...
Collapse
|
30
|
Wang K, Huang J, Liu W, Wu Z, Yu X, Jiang J, He W. Direct Synthesis of 3-Sulfonylquinolines from N-Propargylanilines with Sulfonyl Chlorides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Yi R, He W. Near-Infrared Photocatalytic Oxidation Functionalization Mediated by Gold Nanoclusters. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
WANG W, Zou PS, PANG L, Pan C, Mo DL, SU GF. Recent Advances on the Synthesis of 2,3-Fused Quinazolinones. Org Biomol Chem 2022; 20:6293-6313. [DOI: 10.1039/d2ob00778a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As one of the most important structural units in pharmaceuticals and medicinal chemistry, quinazolinone and its derivatives exhibit a wide range of biological and pharmacological activities, including anti-inflammatory, antitubercular, antiviral,...
Collapse
|
33
|
Feng J, Jia X, Zhang S, Lu K, Cahard D. State of knowledge in photoredox-catalysed direct difluoromethylation. Org Chem Front 2022. [DOI: 10.1039/d2qo00551d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The combination of visible light photoredox catalysis with direct difluoromethylation has allowed the synthesis of a large choice of CF2H-containing value-added molecules under very mild reaction conditions.
Collapse
Affiliation(s)
- Jiaxu Feng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
- Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Xiaodong Jia
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Shuyue Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
- Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Dominique Cahard
- CNRS, UMR 6014 COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| |
Collapse
|
34
|
Yi R, He W. Visible-Light-Induced Radical Arylation Reactions via Electron Donor-Acceptor Complex. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Wenpeng W, Chunhong Y, Haichao L, Xicun W, Zhengjun Q. Addition of Benzyne to 2-Hydroxypyrimidine to Synthesize 2-Aryloxypyrimidine Derivatives under Mild Conditions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Li H, Chen P, Wu Z, Lu Y, Peng J, Chen J, He W. Electrochemical Oxidative Cross-Dehydrogenative Coupling of Five-Membered Aromatic Heterocycles with NH 4SCN. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|