1
|
Hamdalla TA, Alfadhli S, Khasim S, Darwish A, ElZaidia E, Al-Ghamdi S, Aljohani MM, Mahmoud ME, Seleim SM. Synthesis of novel Cu/Fe based benzene Dicarboxylate (BDC) metal organic frameworks and investigations into their optical and electrochemical properties. Heliyon 2024; 10:e25065. [PMID: 38317972 PMCID: PMC10839998 DOI: 10.1016/j.heliyon.2024.e25065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
In the recent past Metal-organic frameworks (MOFs) based thin films have demonstrated superior performance in various technological applications such as optical and optoelectronic devices, electrochemical energy storage, catalysis, and sensing. Herein we report tuning the optical performance of stable complexes using Cu and Fe metal ions with carboxylate benzene dicarboxylic (BDC), leading toward the formation of novel MOF structures. The formation of Cu-BDC and Fe-BDC were confirmed by XRD and SEM studies. The thermal stability of two MOFs was investigated, indicating that, the Cu-BDC is more stable than Fe-BDC. Further, the optical properties were investigated in the wavelength range 325-1100 nm, and the Fe-BDC exhibited greater optical transmission properties than Cu-BDC by 33 %, as investigated by Wemple-DiDomenico and Tauc models. The dispersion parameters related to optical studies for Cu-BDC were better in comparison to Fe-BDC, which could be attributed to the increase in Cu valence electrons due to an increase in the number of cations. The electrochemical behavior in terms of CV measurements shows the presence of pseudo capacitance in both Fe-BDC and Cu-BDC MOFs. The improved CV performance of Cu-BDC MOF suggests that it could be used as a storage material. This work successfully demonstrates the tailoring of optical properties related to MOF thin films through the formation of stable complexes using BDC as a potential material for the fabrication of OLED's and Solar cells. The improved CV performance suggests that these MOF based materials could be used as anodes in fabrication of batteries or supercapacitors.
Collapse
Affiliation(s)
- Taymour A. Hamdalla
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - S. Alfadhli
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Syed Khasim
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - A.A.A. Darwish
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - E.F.M. ElZaidia
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757, Cairo, Egypt
| | - S.A. Al-Ghamdi
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Meshari M. Aljohani
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mohamed E. Mahmoud
- Chemistry Department, Faculty of Science, Alexandria University, Ibrahima, 21321, Alexandria, Egypt
| | - Seleim M. Seleim
- Chemistry Department, Faculty of Science, Alexandria University, Ibrahima, 21321, Alexandria, Egypt
| |
Collapse
|
2
|
Zhang Z, Zhang Z, Sun Z, Zhan S, Wang G. Editorial. Chem Asian J 2023; 18:e202300051. [PMID: 36852912 DOI: 10.1002/asia.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 03/01/2023]
Abstract
Surface and interface engineering has been considered as a promising strategy to enhance the performance of catalysts towards CO2 reduction. In their editorial to this special collection, guest editors Zhicheng Zhang, Zhen Zhang, Zhenyu Sun, Shaoqi Zhan and Guoxiong Wang provide a brief overview of this field and highlight the state-of-the-art contributions featured in this special collection.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhen Zhang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhenyu Sun
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shaoqi Zhan
- Department of Chemistry, BMC, Uppsala University, S-751 23, Uppsala, Sweden.,Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian, National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
3
|
Shen Y, Tissot A, Serre C. Recent progress on MOF-based optical sensors for VOC sensing. Chem Sci 2022; 13:13978-14007. [PMID: 36540831 PMCID: PMC9728564 DOI: 10.1039/d2sc04314a] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/04/2022] [Indexed: 08/16/2023] Open
Abstract
The raising apprehension of volatile organic compound (VOC) exposures urges the exploration of advanced monitoring platforms. Metal-organic frameworks (MOFs) provide many attractive features including tailorable porosity, high surface areas, good chemical/thermal stability, and various host-guest interactions, making them appealing candidates for VOC capture and sensing. To comprehensively exploit the potential of MOFs as sensing materials, great efforts have been dedicated to the shaping and patterning of MOFs for next-level device integration. Among different types of sensors (chemiresistive sensors, gravimetric sensors, optical sensors, etc.), MOFs coupled with optical sensors feature distinctive strength. This review summarized the latest advancements in MOF-based optical sensors with a particular focus on VOC sensing. The subject is discussed by different mechanisms: colorimetry, luminescence, and sensors based on optical index modulations. Critical analysis for each system highlighting practical aspects was also deliberated.
Collapse
Affiliation(s)
- Yuwei Shen
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Antoine Tissot
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| |
Collapse
|