1
|
Jiang S, Liang M, Chen X, Yang R, Ding HX, Luo MJ, Huang H, Song XR, Xiao Q. TMSCl-Promoted Sulfonylation of Propargylic Alcohols with Sodium Sulfinates for the Construction of ( E)-1,3-Disulfonylpropenes and ( E)-1-Sulfonylpropenols. J Org Chem 2024; 89:15694-15707. [PMID: 39395003 DOI: 10.1021/acs.joc.4c01829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
A direct and novel transformation of propargylic alcohols with sodium sulfinates for the regio- and stereoselective synthesis of (E)-1,3-disulfonylpropenes and (E)-1-sulfonylpropenols was successfully developed in the presence of TMSCl under mild conditions. The preliminary mechanistic experiments demonstrated that the reaction underwent an unprecedented dual nucleophilic substitution/radical addition process, in which sodium sulfinates were used not only as nucleophiles but also as a sulfonyl radical source.
Collapse
Affiliation(s)
- Shimin Jiang
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Meng Liang
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Xi Chen
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Ruchun Yang
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Hai-Xin Ding
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Mu-Jia Luo
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Haiyang Huang
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Xian-Rong Song
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Qiang Xiao
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| |
Collapse
|
2
|
Dinda TK, Manna A, Nayek P, Mandal B, Mal P. Ultrasmall CsPbBr 3 Nanocrystals as a Recyclable Heterogeneous Photocatalyst in 100% E- and Anti-Markovnikov Sulfinylsulfonation of Terminal Alkynes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49411-49427. [PMID: 39238429 DOI: 10.1021/acsami.4c10579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The precise synthesis of ultrasmall, monodisperse CsPbBr3 nanocrystals is crucial due to their enhanced photophysical properties resulting from strong quantum confinement effects. Traditional methods struggle with size control, complicating synthesis. Although CsPbBr3 nanocrystals find applications in LEDs and photovoltaics, their use in photocatalysis for organic reactions remains limited. Our study introduces ultrasmall TBIA-CsPbBr3 nanocrystals (∼5.6 nm), synthesized via a three-precursor hot injection method using tribromoisocyanuric acid (TBIA) as a bromine precursor for the first time. These nanocrystals exhibit a near-unity photoluminescence quantum yield (PLQY) of 0.99 and an elevated oxidation potential of +1.80 V. We demonstrate their efficacy as recyclable heterogeneous photocatalysts in a one-pot, 100% E-selective, anti-Markovnikov sulfinylsulfonation of terminal alkynes under visible light, achieving a high product conversion rate (PCR) of 62,500 μmol g-1 h-1 and recyclability for up to five cycles. Density functional theory (DFT) calculations support the exclusive formation of the E-isomer. TBIA-CsPbBr3 outperforms other CsPbBr3 perovskites in photocatalysis, with superior efficiency attributed to their extended excited-state lifetime and higher surface area, which accelerates the organic transformation process.
Collapse
Affiliation(s)
- Tarun Kumar Dinda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Anupam Manna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Pravat Nayek
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Bikash Mandal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
3
|
Peng G, Yu X, Bai J, Yang R, Wei F, Xiao Q. Divergent Reaction of Alkynes and TsCN: Synthesis of β-Sulfinyl Alkenylsulfones and ( E)-Vinyl Sulfones. J Org Chem 2024; 89:12159-12169. [PMID: 39150242 DOI: 10.1021/acs.joc.4c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
An efficient and high-selectivity approach for the divergent synthesis of β-sulfinyl alkenylsulfones and (E)-vinyl sulfones from alkynes and TsCN is described. A series of disulfurized products were constructed under mild conditions in the absence of transition metals. This transformation featured excellent regio- and stereoselectivity, good functional group compatibility, and broad substrate scope. The copper(I)-catalyzed sulfonation of alkynes with TsCN that affords (E)-vinyl sulfones in good to excellent yields was also developed.
Collapse
Affiliation(s)
- Guiting Peng
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Xin Yu
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiang Bai
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Ruchun Yang
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Fang Wei
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Qiang Xiao
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| |
Collapse
|
4
|
Yu SW, Chen ZJ, Li HQ, Li WX, Li Y, Li Z, Wang ZY. Oxysulfonylation of Alkynes with Sodium Sulfinates to Access β-Keto Sulfones Catalyzed by BF 3·OEt 2. Molecules 2024; 29:3559. [PMID: 39124964 PMCID: PMC11314596 DOI: 10.3390/molecules29153559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
An efficient and operationally simple method for the synthesis of β-keto sulfones through the BF3·OEt2-promoted reaction of alkynes and sodium sulfinates is developed. With its facile and selective access to the targets, it features good functional group compatibility, mild conditions, easily available starting materials, and good yields. Notably, the reaction does not require metal catalysts or chemical reagents with pungent odors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (S.-W.Y.); (Z.-J.C.); (H.-Q.L.); (W.-X.L.); (Y.L.); (Z.L.)
| |
Collapse
|
5
|
Duan Y, Zheng Z, Yu Z, Sun S, Lin B, Liu X, Liu P. Catalyst-Free α- trans-Selective Hydroboration and ( E)-Selective Deuterated Semihydrogenation of Alkynyl Sulfones. J Org Chem 2024; 89:8326-8333. [PMID: 38817078 DOI: 10.1021/acs.joc.3c02833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Here, we present a straightforward α-trans-selective hydroboration of alkynyl sulfones with NHC-boranes without the need for a catalyst. This reaction is compatible with a wide range of substrates for efficiently producing structurally diverse α-borylated vinyl sulfones in satisfactory yields. The hydride transfer from NHC-borane 2a to alkynyl triflone 1b is studied by density functional theory (DFT) calculations for trans-hydroboration. Moreover, a regiodivergent deuterated semihydrogenation of alkynyl triflones has also been developed using D2O as the deuterium source. A variety of diversity-oriented D-containing vinyl triflones were prepared in good to excellent yields with excellent deuterium incorporation ratios. Synthetic manipulations of the deuterated products are achieved for the conversion into valuable deuterated molecules, indicating the utility of this protocol.
Collapse
Affiliation(s)
- Yunnan Duan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zhouqing Zheng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zhiwei Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shitao Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
6
|
Yu SW, Chen ZJ, Chen ZH, Chen SH, Yang K, Xu WJ, Wang ZY. Trace water in a BF 3·OEt 2 system: a facile access to sulfinyl alkenylsulfones from alkynes and sodium sulfinates. Org Biomol Chem 2023; 21:7776-7781. [PMID: 37701943 DOI: 10.1039/d3ob01249b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
A highly efficient and operationally simple method for the synthesis of β-sulfinyl alkenylsulfones through a BF3·OEt2-promoted reaction of alkynes and sodium sulfinates is developed, successfully avoiding the complicated anhydrous treatment before the reaction and greatly simplifying the reaction conditions. As a facile and selective route to the targets, it features good functional group compatibility, mild conditions, easily available starting materials, and excellent yields. Notably, the trace water in solvent plays a key role in promoting the reaction, which provides a more practical pathway for the utilization of the BF3·OEt2 catalytic system.
Collapse
Affiliation(s)
- Shi-Wei Yu
- School of Chemistry, South China Normal University; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, P. R. China.
| | - Zu-Jia Chen
- School of Chemistry, South China Normal University; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, P. R. China.
| | - Zhao-Hua Chen
- School of Chemistry, South China Normal University; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, P. R. China.
| | - Si-Hong Chen
- School of Chemistry, South China Normal University; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, P. R. China.
| | - Kai Yang
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Wen-Jin Xu
- School of Chemistry, South China Normal University; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, P. R. China.
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, P. R. China.
| |
Collapse
|
7
|
Tu JL, Hu AM, Guo L, Xia W. Iron-Catalyzed C(Sp 3)-H Borylation, Thiolation, and Sulfinylation Enabled by Photoinduced Ligand-to-Metal Charge Transfer. J Am Chem Soc 2023; 145:7600-7611. [PMID: 36958308 DOI: 10.1021/jacs.3c01082] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Catalytic C(sp3)-H functionalization has provided enormous opportunities to construct organic molecules, facilitating the derivatization of complex pharmaceutical compounds. Within this framework, direct hydrogen atom transfer (HAT) photocatalysis becomes an appealing approach to this goal. However, the viable substrates utilized in these protocols are limited, and the site selectivity shows preference to activated and thermodynamically favored C(sp3)-H bonds. Herein, we describe the development of undirected iron-catalyzed C(sp3)-H borylation, thiolation, and sulfinylation reactions enabled by the photoinduced ligand-to-metal charge transfer (LMCT) process. These reactions exhibit remarkably broad substrate scope (>150 examples in total), and most importantly, all of these three reactions show unconventional regioselectivity, with the occurrence of C(sp3)-H borylation, thiolation, and sulfinylation preferentially at the distal methyl position. The procedures are operationally simple and readily scalable and provide access to high-value products from simple hydrocarbons in one step. Mechanistic studies and control experiments indicate that the afforded site selectivity is not only relevant to the HAT species but also largely affected by the use of boron- and sulfone-based radical acceptors.
Collapse
Affiliation(s)
- Jia-Lin Tu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ao-Men Hu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
8
|
Nguyen VD, Haug GC, Greco SG, Trevino R, Karki GB, Arman HD, Larionov OV. Decarboxylative Sulfinylation Enables a Direct, Metal-Free Access to Sulfoxides from Carboxylic Acids. Angew Chem Int Ed Engl 2022; 61:e202210525. [PMID: 36006859 PMCID: PMC9588746 DOI: 10.1002/anie.202210525] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 12/14/2022]
Abstract
The intermediate oxidation state of sulfoxides is central to the plethora of their applications in chemistry and medicine, yet it presents challenges for an efficient synthetic access, limiting the structural diversity of currently available sulfoxides. Here, we report a data-guided development of direct decarboxylative sulfinylation that enables the previously inaccessible functional group interconversion of carboxylic acids to sulfoxides in a reaction with sulfinates. Given the broad availability of carboxylic acids and the growing synthetic potential of sulfinates, the direct decarboxylative sulfinylation is poised to improve the structural diversity of synthetically accessible sulfoxides. The reaction is facilitated by a kinetically favored sulfoxide formation from the intermediate sulfinyl sulfones, despite the strong thermodynamic preference for the sulfone formation, unveiling the previously unknown and chemoselective radicalophilic sulfinyl sulfone reactivity.
Collapse
Affiliation(s)
- Viet D Nguyen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Graham C Haug
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Samuel G Greco
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Ramon Trevino
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Guna B Karki
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Hadi D Arman
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Oleg V Larionov
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|