1
|
Aslam AA, Amjad S, Irshad A, Kokab O, Ullah MS, Farid A, Mehmood RA, Hassan SU, Nazir MS, Ahmed M. From Fundamentals to Synthesis: Covalent Organic Frameworks as Promising Materials for CO 2 Adsorption. Top Curr Chem (Cham) 2025; 383:10. [PMID: 39987291 DOI: 10.1007/s41061-025-00494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/01/2025] [Indexed: 02/24/2025]
Abstract
Covalent organic frameworks (COFs) are highly crystalline polymers that possess exceptional porosity and surface area, making them a subject of significant research interest. COF materials are synthesized by chemically linking organic molecules in a repetitive arrangement, creating a highly effective porous crystalline structure that adsorbs and retains gases. They are highly effective in removing impurities, such as CO2, because of their desirable characteristics, such as durability, high reactivity, stable porosity, and increased surface area. This study offers a background overview, encompassing a concise discussion of the current issue of excessive carbon emissions, and a synopsis of the materials most frequently used for CO2 collection. This review provides a detailed overview of COF materials, particularly emphasizing their synthesis methods and applications in carbon capture. It presents the latest research findings on COFs synthesized using various covalent bond formation techniques. Moreover, it discusses emerging trends and future prospects in this particular field.
Collapse
Affiliation(s)
- Awais Ali Aslam
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland.
- Department of Chemistry, COMSATS University Islamabad, Lahore, 58000, Pakistan.
| | - Sania Amjad
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Adnan Irshad
- Department of Chemistry, University of Education Lahore, Vehari, 61100, Pakistan
- Department of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Osama Kokab
- Department of Chemistry, COMSATS University Islamabad, Lahore, 58000, Pakistan
| | - Mudassar Sana Ullah
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, 54770, Pakistan
| | - Awais Farid
- Department of Chemistry, University of Education Lahore, Vehari, 61100, Pakistan
| | - Rana Adeel Mehmood
- Department of Chemistry, University of Education Lahore, Vehari, 61100, Pakistan
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore, 58000, Pakistan
| | | | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, 54770, Pakistan.
| |
Collapse
|
2
|
Rajasekharan Sujatha A, Anil A, Deni Raju P, Veettil Suneesh C. 1,3,5-Triformylphloroglucinol Derived β-Ketoenamine-Linked Functional Covalent Organic Frameworks with Enhanced Crystallinity and Stability-Recent Advances. Chem Asian J 2025:e202401434. [PMID: 39776275 DOI: 10.1002/asia.202401434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Crystallinity, stability, and complexity are significant factors to consider in the design and development of covalent organic frameworks (COFs). Among various building blocks used, 1,3,5-triformylphloroglucinol (Tp) is notable for enhancing both crystallinity and structural stability in COFs. Tp facilitates the formation of β-ketoenamine-linked COFs through keto-enol tautomerism when reacted with aromatic amines. This review article examines the stability, crystallinity, and flexibility of synthetic methodologies involving Tp-based COFs, while highlighting their recent applications. We emphasize the critical roles of non-covalent interactions and keto-enol tautomerism in achieving high levels of crystallinity and stability. Additionally, the diverse and straightforward synthesis methods available for Tp-based COFs contribute to the prevalence of 1,3,5-triformylphloroglucinol in COF development. We conclude by addressing the challenges and future prospects in this area, underscoring the significant potential of Tp-based COFs for environmental and energy-related applications due to their exceptional structural tunability and functionality.
Collapse
Affiliation(s)
- Athira Rajasekharan Sujatha
- Department of Chemistry, University of Kerala, Kariavattom Campus, Kerala, Thiruvananthapuram, 695581, India
| | - Aparna Anil
- Department of Chemistry, University of Kerala, Kariavattom Campus, Kerala, Thiruvananthapuram, 695581, India
| | - Princy Deni Raju
- Department of Chemistry, University of Kerala, Kariavattom Campus, Kerala, Thiruvananthapuram, 695581, India
| | - Chettiyam Veettil Suneesh
- Department of Chemistry, University of Kerala, Kariavattom Campus, Kerala, Thiruvananthapuram, 695581, India
| |
Collapse
|
3
|
Deka DJ, Biswas C, Paul R, Xu J, Huang Y, Dao DQ, Mondal J. Harmonizing Between Chemical Functionality and Surface Area of Porous Organic Polymeric Nanotraps for Tuning Carbon Dioxide Capture. Chem Asian J 2024; 19:e202400515. [PMID: 38899858 DOI: 10.1002/asia.202400515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
The energy sector has demonstrated significant enthusiasm for investigating post-combustion CO2 capture, storage, and separation. However, the practical application of current porous adsorbents is impeded by challenges related to cost competitiveness, stability, and scalability. Intregation of heteroatoms in the porous organic polymers (POPs) dispense it more susceptible for CO2 adsorption to attenuate green house gases. In this regard, two hydroxy rich hypercrosslinked POPs, namely Ph/Tt-POP have been developed by one-pot condensation polymerization using a facile synthetic strategy. The high surface areas of both the Ph/Tt-POP (1057 and 893 m2g-1, respectively), and the heteroatom functionality in the POP framework instigated us to explore our material for CO2 adsorption study. The CO2 uptake capacities in Ph/Tt-POP are found to be 2.45 and 2.2 mmol g-1, at 273 K respectively. Further, in-situ static 13C NMR experiment shows that CO2 molecules in Tt-POP appear to be less mobile than those in Ph-POP which probably due to the presence of triazine functional groups along with high abundant -OH groups in the Tt-POP framework. An in-depth study of the CO2 adsorption mechanism by density functional theory (DFT) calculations also shows that CO2 adsorption at the cages formed by two benzyl rings represents the most stable interaction and CO2 molecule is more favorably adsorbed on the Ph-POP with the more negative interaction energies values compared to that of Tt-POP. Further, Non-covalent interaction (NCI) plot reveals that CO2 molecules adsorb more on the Ph-POP than Tt-POP, which can be explain by hydrogen bond formation in case of Tt-POP repeating units turning aside CO2 molecule to interact with the Ph component. Overall, our present study reflects the comprising effects of surface area of the solid adsorbents as well as their functionality can be beneficial for developing efficient hypercrosslinked porous polymers as solid CO2 adsorbent.
Collapse
Affiliation(s)
- Dhruba Jyoti Deka
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chandan Biswas
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jiabin Xu
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Paul R, Maibam A, Chatterjee R, Wang W, Mukherjee T, Das N, Yellappa M, Banerjee T, Bhaumik A, Venkata Mohan S, Babarao R, Mondal J. Purification of Waste-Generated Biogas Mixtures Using Covalent Organic Framework's High CO 2 Selectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22066-22078. [PMID: 38629710 DOI: 10.1021/acsami.4c03245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Development of crystalline porous materials for selective CO2 adsorption and storage is in high demand to boost the carbon capture and storage (CCS) technology. In this regard, we have developed a β-keto enamine-based covalent organic framework (VM-COF) via the Schiff base polycondensation technique. The as-synthesized VM-COF exhibited excellent thermal and chemical stability along with a very high surface area (1258 m2 g-1) and a high CO2 adsorption capacity (3.58 mmol g-1) at room temperature (298 K). The CO2/CH4 and CO2/H2 selectivities by the IAST method were calculated to be 10.9 and 881.7, respectively, which were further experimentally supported by breakthrough analysis. Moreover, theoretical investigations revealed that the carbonyl-rich sites in a polymeric backbone have higher CO2 binding affinity along with very high binding energy (-39.44 KJ mol-1) compared to other aromatic carbon-rich sites. Intrigued by the best CO2 adsorption capacity and high CO2 selectivity, we have utilized the VM-COF for biogas purification produced by the biofermentation of municipal waste. Compared with the commercially available activated carbon, VM-COF exhibited much better purification ability. This opens up a new opportunity for the creation of functionalized nanoporous materials for the large-scale purification of waste-generated biogases to address the challenges associated with energy and the environment.
Collapse
Affiliation(s)
- Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashakiran Maibam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical and Materials Division, CSIR-National Chemical Laboratory, Pune 411 008, India
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne 3001, Victoria, Australia
| | - Rupak Chatterjee
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Triya Mukherjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Nitumani Das
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Masapogu Yellappa
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Tanmay Banerjee
- Department of Chemistry, BITS Pilani, Pilani 333031, Gujarat, India
| | - Asim Bhaumik
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - S Venkata Mohan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Ravichandar Babarao
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne 3001, Victoria, Australia
- CSIRO, Normanby Road, Clayton 3168, Victoria, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, School of Science, RMIT University, Melbourne 3000, Australia
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Krupšová S, Almáši M. Cellulose-Amine Porous Materials: The Effect of Activation Method on Structure, Textural Properties, CO 2 Capture, and Recyclability. Molecules 2024; 29:1158. [PMID: 38474671 DOI: 10.3390/molecules29051158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
CO2 capture via physical adsorption on activated porous carbons represents a promising solution towards effective carbon emission mitigation. Additionally, production costs can be further decreased by utilising biomass as the main precursor and applying energy-efficient activation. In this work, we developed novel cellulose-based activated carbons modified with amines (diethylenetriamine (DETA), 1,2-bis(3-aminopropylamino)ethane (BAPE), and melamine (MELA)) with different numbers of nitrogen atoms as in situ N-doping precursors. We investigated the effect of hydrothermal and thermal activation on the development of their physicochemical properties, which significantly influence the resulting CO2 adsorption capacity. This process entailed an initial hydrothermal activation of biomass precursor and amines at 240 °C, resulting in C+DETA, C+BAPE and C+MELA materials. Thermal samples (C+DETA (P), C+BAPE (P), and C+MELA (P)) were synthesised from hydrothermal materials by subsequent KOH chemical activation and pyrolysis in an inert argon atmosphere. Their chemical and structural properties were characterised using elemental analysis (CHN), infrared spectroscopy (IR), scanning electron microscopy (SEM), and thermogravimetric analysis (TG). The calculated specific surface areas (SBET) for thermal products showed higher values (998 m2 g-1 for C+DETA (P), 1076 m2 g-1 for C+BAPE (P), and 1348 m2 g-1 for C+MELA (P)) compared to the hydrothermal products (769 m2 g-1 for C+DETA, 833 m2 g-1 for C+BAPE, and 1079 m2 g-1 for C+MELA). Carbon dioxide adsorption as measured by volumetric and gravimetric methods at 0 and 25 °C, respectively, showed the opposite trend, which can be attributed to the reduced content of primary adsorption sites in the form of amine groups in thermal products. N2 and CO2 adsorption measurements were carried out on hydrothermal (C) and pyrolysed cellulose (C (P)), which showed a several-fold reduction in adsorption properties compared to amine-modified materials. The recyclability of C+MELA, which showed the highest CO2 adsorption capacity (7.34 mmol g-1), was studied using argon purging and thermal regeneration over five adsorption/desorption cycles.
Collapse
Affiliation(s)
- Sarah Krupšová
- Novy PORG Gymnasium, Pod Krcskym lesem 25, CZ-142 00 Prague, Czech Republic
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, Pavol Jozef Safarik University, Moyzesova 11, SK-040 01 Kosice, Slovakia
| |
Collapse
|
6
|
Paul R, Kalita P, Dao DQ, Mondal I, Boro B, Mondal J. Linker Independent Regioselective Protonation Triggered Detoxification of Sulfur Mustards with Smart Porous Organic Photopolymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302045. [PMID: 37165579 DOI: 10.1002/smll.202302045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/20/2023] [Indexed: 05/12/2023]
Abstract
The development of efficient metal-free photocatalysts for the generation of reactive oxygen species (ROS) for sulfur mustard (HD) decontamination can play a vital role against the stockpiling of chemical warfare agents (CWAs). Herein, one novel concept is conceived by smartly choosing a specific ionic monomer and a donor tritopic aldehyde, which can trigger linker-independent regioselective protonation/deprotonation in the polymeric backbone. In this context, the newly developed vinylene-linked ionic polymers (TPA/TPD-Ionic) are further explored for visible-light-assisted detoxification of HD simulants. Time-resolved-photoluminescence (TRPL) study reveals the protonation effect in the polymeric backbone by significantly enhancing the life span of photoexcited electrons. In terms of catalytic performance, TPA-Ionic outperformed TPD-Ionic because of its enhanced excitons formation and charge carrier abilities caused by the donor-acceptor (D-A) backbone and protonation effects. Moreover, the formation of singlet oxygen (1 O2 ) species is confirmed via in-situ Electron Spin Resonance (ESR) spectroscopy and density functional theory (DFT) analysis, which explained the crucial role of solvents in the reaction medium to regulate the (1 O2 ) formation. This study creates a new avenue for developing novel porous photocatalysts and highlights the crucial roles of sacrificial electron donors and solvents in the reaction medium to establish the structure-activity relationship.
Collapse
Affiliation(s)
- Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyanka Kalita
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Vietnam
| | - Indranil Mondal
- Department of Chemistry, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Bishal Boro
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|