1
|
Xiong K, Xie H, Du Y, Ning X, Zhou W, Wu T, Qu JP. Superhydrophobic Magnetic-Driven Reactor for Microliter Droplet Reaction Interface Visualization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59315-59326. [PMID: 39420760 DOI: 10.1021/acsami.4c13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The development of an efficient, convenient, and cost-effective droplet-driven reactor to observe the reaction microphenomenon is crucial for investigating the chemical reaction and synthesis mechanisms. Herein, an efficient and economical strategy by combining micro-extrusion compression molding (μ-ECM) and surface modification was proposed to fabricate a superhydrophobic magnetic-driven reactor (SMDR) for microliter droplet reaction interface visualization. The wall-like array microstructures with favorable geometric uniformity and the nano-SiO2 coating with uniform dispersion endow the SMDR with robust superhydrophobicity, featuring a contact angle of 159.5 ± 1.0° and a rolling angle of 5.1 ± 0.5°. Due to the uniform dispersion of Fe3O4 in thermoplastic elastomer (TPE), the SMDR possesses sensitive magnetic responsiveness, which can drive droplets to move rapidly, continuously, and losslessly on horizontal and inclined planes, even on a plane with an inclination angle of up to 15°. Interestingly, the SMDR was successfully used to visualize the interface formation and evolution of three simple mixing/reaction processes, which provides a convenient, efficient, and low-cost method for the study of the droplet mixing reaction process and interface visualization.
Collapse
Affiliation(s)
- Kai Xiong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Heng Xie
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, China
| | - Yu Du
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaowei Ning
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Weilong Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ting Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jin-Ping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
2
|
Wang Z, Qu G, Ren Y, Chen X, Wang J, Lu P, Cheng M, Chu X, Yuan Y. Study on the Mechanism of Rapid Oil-Water Separation by a Fe 3 O 4 @PMMA@PDMS Intelligent Superhydrophobic Micro/Nanorobot. Chem Asian J 2024; 19:e202300863. [PMID: 37937970 DOI: 10.1002/asia.202300863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
We prepared an environmentally friendly intelligent Fe3 O4 @PMMA@PDMS superhydrophobic oil-absorbing material with simple process and excellent performance, and investigated the effects of different particle sizes of Fe3 O4 , different concentrations of PDMS, and different heating times on the superhydrophobicity of the coating. The best performance of the coating was achieved at a particle size combination of 20/500 nm for Fe3 O4 , a PDMS to Fe3 O4 @PMMA mass ratio of 6 : 1, and a heating time of 2 min at 400 °C. H2-SPSS coating not only has excellent superhydrophobicity, abrasion resistance, self-cleaning property, and chemical corrosion, but also has good flux and efficiency for separating oil-water mixture, with fluxes of 40,540, 32,432, and 37,027 Lm-2 h-1 for trichloromethane, dichloromethane and bromoethane, respectively, and separation efficiencies of 99.78 %, 99.74 % and 99.73 %, respectively. In addition, we also prepared a superhydrophobic magnetic polyurethane (SPPU) sponge using Fe3 O4 @PMMA@PDMS, which not only has a good oil absorption capacity of 18-44 g/g for different oil substances, it can also move directionally by magnet attraction and absorb oil along a fixed path. Under the control of the magnet, SPPU completes the whole oil absorption process in only 4 s, showing excellent oil absorption and intelligence.
Collapse
Affiliation(s)
- Zuoliang Wang
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| | - Guangfei Qu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| | - Yuanchuan Ren
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| | - Xiuping Chen
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| | - Jun Wang
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| | - Ping Lu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| | - Minhua Cheng
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| | - Xiaomei Chu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| | - Yongheng Yuan
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| |
Collapse
|