1
|
Bozhokin MS, Bozhkova SA, Netylko GI, Nakonechny DG, Nashchekina YA, Blinova MI, Anisimova LO. Experimental Replacement of the Surface Defect of Rat Hyaline Cartilage by a Cell-Engineered Construct. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Ma L, Zhang Y, Wang C. Coaction of TGF-β1 and CDMP1 in BMSCs-induced laryngeal cartilage repair in rabbits. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:130. [PMID: 33252704 DOI: 10.1007/s10856-020-06454-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are well-known for tissue regeneration and bone repair. This study intended to evaluate the potential efficiency BMSCs in poly(lactide-co-glycolide) (PLGA) scaffolds for the treatment of laryngeal cartilage defects. BMSCs were isolated and identified, and added with 10 ng/mL transforming growth factor-beta1 (TGF-β1) or/and 300 ng/mL CDMP1 to coculture with PLGA scaffolds. The chondrogenic differentiation, migration, and apoptosis of BMSCs were detected under the action of TGF-β1 or/and CDMP1. After successful modeling of laryngeal cartilage defects, PLGA scaffolds were transplanted into the rabbits correspondingly. After 8 weeks, laryngeal cartilage defects were assessed. Levels of collagen II, aggrecan, Sox9, Smad2, Smad3, ERK, and JNK were detected. The TGF-β1 or/and CDMP1-induced BMSCs expressed collagen II, aggrecan, and Sox9, with enhanced cell migration and inhibited apoptosis. In addition, laryngeal cartilage defect in rabbits with TGF-β1 or/and CDMP1 was alleviated, and levels of specific cartilage matrix markers were decreased. The combined effects of TGF-β1 and CDMP1 were more significant. The TGF-β1/Smad and ERK/JNK pathways were activated after TGF-β1 or/and CDMP1 were added to BMSCs or rabbits. In summary, BMSCs and PLGA scaffolds repair laryngeal cartilage defects in rabbits by activating the TGF-β1/Smad and ERK/JNK pathways under the coaction of TGF-β1 and CDMP1.
Collapse
Affiliation(s)
- Linxiang Ma
- Department of Otolaryngology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, PR China
| | - Yonghong Zhang
- Department of Otolaryngology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, PR China
| | - Caihua Wang
- Department of Otolaryngology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, PR China.
| |
Collapse
|
3
|
Madry H, Venkatesan JK, Carballo-Pedrares N, Rey-Rico A, Cucchiarini M. Scaffold-Mediated Gene Delivery for Osteochondral Repair. Pharmaceutics 2020; 12:pharmaceutics12100930. [PMID: 33003607 PMCID: PMC7601511 DOI: 10.3390/pharmaceutics12100930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Osteochondral defects involve both the articular cartilage and the underlying subchondral bone. If left untreated, they may lead to osteoarthritis. Advanced biomaterial-guided delivery of gene vectors has recently emerged as an attractive therapeutic concept for osteochondral repair. The goal of this review is to provide an overview of the variety of biomaterials employed as nonviral or viral gene carriers for osteochondral repair approaches both in vitro and in vivo, including hydrogels, solid scaffolds, and hybrid materials. The data show that a site-specific delivery of therapeutic gene vectors in the context of acellular or cellular strategies allows for a spatial and temporal control of osteochondral neotissue composition in vitro. In vivo, implantation of acellular hydrogels loaded with nonviral or viral vectors has been reported to significantly improve osteochondral repair in translational defect models. These advances support the concept of scaffold-mediated gene delivery for osteochondral repair.
Collapse
Affiliation(s)
- Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany; (H.M.); (J.K.V.)
| | - Jagadeesh Kumar Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany; (H.M.); (J.K.V.)
| | - Natalia Carballo-Pedrares
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, S-15071 A Coruña, Spain; (N.C.-P.); (A.R.-R.)
| | - Ana Rey-Rico
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, S-15071 A Coruña, Spain; (N.C.-P.); (A.R.-R.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany; (H.M.); (J.K.V.)
- Correspondence: ; Tel.: +49-684-1162-4987; Fax: +49-684-1162-4988
| |
Collapse
|
4
|
Weißenberger M, Weißenberger MH, Wagenbrenner M, Heinz T, Reboredo J, Holzapfel BM, Rudert M, Groll J, Evans CH, Steinert AF. Different types of cartilage neotissue fabricated from collagen hydrogels and mesenchymal stromal cells via SOX9, TGFB1 or BMP2 gene transfer. PLoS One 2020; 15:e0237479. [PMID: 32790806 PMCID: PMC7425924 DOI: 10.1371/journal.pone.0237479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 11/18/2022] Open
Abstract
Objective As native cartilage consists of different phenotypical zones, this study aims to fabricate different types of neocartilage constructs from collagen hydrogels and human mesenchymal stromal cells (MSCs) genetically modified to express different chondrogenic factors. Design Human MSCs derived from bone-marrow of osteoarthritis (OA) hips were genetically modified using adenoviral vectors encoding sex-determining region Y-type high-mobility-group-box (SOX) 9, transforming growth factor beta (TGFB) 1 or bone morphogenetic protein (BMP) 2 cDNA, placed in type I collagen hydrogels and maintained in serum-free chondrogenic media for three weeks. Control constructs contained unmodified MSCs or MSCs expressing GFP. The respective constructs were analyzed histologically, immunohistochemically, biochemically, and by qRT-PCR for chondrogenesis and hypertrophy. Results Chondrogenesis in MSCs was consistently and strongly induced in collagen I hydrogels by the transgenes SOX9, TGFB1 and BMP2 as evidenced by positive staining for proteoglycans, chondroitin-4-sulfate (CS4) and collagen (COL) type II, increased levels of glycosaminoglycan (GAG) synthesis, and expression of mRNAs associated with chondrogenesis. The control groups were entirely non-chondrogenic. The levels of hypertrophy, as judged by expression of alkaline phosphatase (ALP) and COL X on both the protein and mRNA levels revealed different stages of hypertrophy within the chondrogenic groups (BMP2>TGFB1>SOX9). Conclusions Different types of neocartilage with varying levels of hypertrophy could be generated from human MSCs in collagen hydrogels by transfer of genes encoding the chondrogenic factors SOX9, TGFB1 and BMP2. This technology may be harnessed for regeneration of specific zones of native cartilage upon damage.
Collapse
Affiliation(s)
- Manuel Weißenberger
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research (OCMR), Julius-Maximilians-University Würzburg, Würzburg, Germany
- * E-mail:
| | - Manuela H. Weißenberger
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research (OCMR), Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Mike Wagenbrenner
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research (OCMR), Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Tizian Heinz
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research (OCMR), Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Jenny Reboredo
- Department of Tissue Engineering and Regenerative Medicine, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Boris M. Holzapfel
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research (OCMR), Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Maximilian Rudert
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research (OCMR), Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Christopher H. Evans
- Department of Physical Medicine and Rehabilitation, Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, United States of America
| | - Andre F. Steinert
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research (OCMR), Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Nie WB, Zhang D, Wang LS. Growth Factor Gene-Modified Mesenchymal Stem Cells in Tissue Regeneration. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1241-1256. [PMID: 32273686 PMCID: PMC7105364 DOI: 10.2147/dddt.s243944] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
There have been marked changes in the field of stem cell therapeutics in recent years, with many clinical trials having been conducted to date in an effort to treat myriad diseases. Mesenchymal stem cells (MSCs) are the cell type most frequently utilized in stem cell therapeutic and tissue regenerative strategies, and have been used with excellent safety to date. Unfortunately, these MSCs have limited ability to engraft and survive, reducing their clinical utility. MSCs are able to secrete growth factors that can support the regeneration of tissues, and engineering MSCs to express such growth factors can improve their survival, proliferation, differentiation, and tissue reconstructing abilities. As such, it is likely that such genetically modified MSCs may represent the next stage of regenerative therapy. Indeed, increasing volumes of preclinical research suggests that such modified MSCs expressing growth factors can effectively treat many forms of tissue damage. In the present review, we survey recent approaches to producing and utilizing growth factor gene-modified MSCs in the context of tissue repair and discuss its prospects for clinical application.
Collapse
Affiliation(s)
- Wen-Bo Nie
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, People's Republic of China
| | - Dan Zhang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, People's Republic of China
| | - Li-Sheng Wang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
6
|
Yan X, Chen YR, Song YF, Yang M, Ye J, Zhou G, Yu JK. Scaffold-Based Gene Therapeutics for Osteochondral Tissue Engineering. Front Pharmacol 2020; 10:1534. [PMID: 31992984 PMCID: PMC6970981 DOI: 10.3389/fphar.2019.01534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022] Open
Abstract
Significant progress in osteochondral tissue engineering has been made for biomaterials designed to deliver growth factors that promote tissue regeneration. However, due to diffusion characteristics of hydrogels, the accurate delivery of signaling molecules remains a challenge. In comparison to the direct delivery of growth factors, gene therapy can overcome these challenges by allowing the simultaneous delivery of growth factors and transcription factors, thereby enhancing the multifactorial processes of tissue formation. Scaffold-based gene therapy provides a promising approach for tissue engineering through transfecting cells to enhance the sustained expression of the protein of interest or through silencing target genes associated with bone and joint disease. Reports of the efficacy of gene therapy to regenerate bone/cartilage tissue regeneration are widespread, but reviews on osteochondral tissue engineering using scaffold-based gene therapy are sparse. Herein, we review the recent advances in gene therapy with a focus on tissue engineering scaffolds for osteochondral regeneration.
Collapse
Affiliation(s)
- Xin Yan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yi-Fan Song
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Meng Yang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Ye
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
7
|
Biomaterial-based delivery systems of nucleic acid for regenerative research and regenerative therapy. Regen Ther 2019; 11:123-130. [PMID: 31338391 PMCID: PMC6626072 DOI: 10.1016/j.reth.2019.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Regenerative medicine is a new and promising medical method aiming at treating patients with defective or dysfunctional tissues by maintaining or enhancing the biological activity of cells. The development of biomaterial-based technologies, such as cell scaffolds and carriers for drug delivery system, are highly required to promote the regenerative research and regenerative therapy. Nucleic acids are one of the most feasible factors to efficiently modify the biological activity of cells. The effective and stable delivery of nucleic acids into cells is highly required to succeed in the modification. Biomaterials-based non-viral carriers or biological carriers, like exosomes, play an important role in the efficient delivery of nucleic acids. This review introduces the examples of regenerative research and regenerative therapy based on the delivery of nucleic acids with biomaterials technologies and emphasizes their importance to accomplish regenerative medicine. Modifying the activity of cells is important for regenerative medicine. Various nucleic acids regulate gene expression to modify the activity of cells. Intracellular delivery system is vital to the nucleic acids-based modification. Biomaterials are useful for the intracellular delivery of nucleic acids.
Collapse
Key Words
- Biomaterials
- CRISPR, clustered regularly interspaced short palindromic repeats
- Cas, CRISPR-associated systems
- Cell scaffold
- DDS, drug delivery system
- Drug delivery system
- ECM, extracellular matrix
- MSC, mesenchymal stem cells
- Nucleic acids
- PEG, polyethylene glycol
- PLGA, poly(d,l-lactic acid-co-glycolic acid)
- RISC, RNA-induced silencing complex
- RNAi, RNA interferince
- Regenerative research
- Regenerative therapy
- TALEN, transcription activator-like effector nuclease
- ZFN, zinc finger nucleases
- lncRNA, long non-coding RNA
- mRNA, messenger RNA
- miRNA, microRNA
- siRNA, small interfering RNA
Collapse
|
8
|
Mesure B, Menu P, Venkatesan JK, Cucchiarini M, Velot É. Biomaterials and Gene Therapy: A Smart Combination for MSC Musculoskeletal Engineering. Curr Stem Cell Res Ther 2019; 14:337-343. [DOI: 10.2174/1574888x14666181205121658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 11/22/2022]
Abstract
Musculoskeletal pathologies, especially those affecting bones and joints, remain a challenge
for regenerative medicine. The main difficulties affecting bone tissue engineering are the size of the
defects, the need for blood vessels and the synthesis of appropriate matrix elements in the engineered
tissue. Indeed, the cartilage is an avascular tissue and consequently has limited regenerative abilities.
Thanks to their self-renewal, plasticity and immunomodulatory properties, mesenchymal stem cells
(MSCs) became a central player in tissue engineering, and have already been shown to be able to differentiate
towards chondrogenic or osteogenic phenotypes. Whether synthetic (e.g. tricalcium phosphate)
or from natural sources (e.g. hyaluronic acid), biomaterials can be shaped to fit into bone and
cartilage defects to ensure mechanical resistance and may also be designed to control cell spatial distribution
or differentiation. Soluble factors are classically used to promote cell differentiation and to
stimulate extracellular matrix synthesis to achieve the desired tissue production. But as they have a
limited lifetime, transfection using plasmid DNA or transduction via a viral vector of therapeutic genes
to induce the cell secretion of these factors allows to have more lasting effects. Also, the chondrocyte
phenotype may be difficult to control over time, with for example the production of hypertrophic or
osteogenic markers that is undesirable in hyaline cartilage. Thus, tissue regeneration strategies became
more elaborate, with an attempt at associating the benefits of MSCs, biomaterials, and gene therapy to
achieve a proper tissue repair. This minireview focuses on in vitro and in vivo studies combining biomaterials
and gene therapy associated with MSCs for bone and cartilage engineering.
Collapse
Affiliation(s)
- Benjamin Mesure
- UMR 7365 CNRS-UL IMoPA, Universite de Lorraine, Nancy, France
| | - Patrick Menu
- UMR 7365 CNRS-UL IMoPA, Universite de Lorraine, Nancy, France
| | | | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Émilie Velot
- UMR 7365 CNRS-UL IMoPA, Universite de Lorraine, Nancy, France
| |
Collapse
|
9
|
Hamann A, Nguyen A, Pannier AK. Nucleic acid delivery to mesenchymal stem cells: a review of nonviral methods and applications. J Biol Eng 2019; 13:7. [PMID: 30675180 PMCID: PMC6339289 DOI: 10.1186/s13036-019-0140-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated and expanded from many tissues, and are being investigated for use in cell therapies. Though MSC therapies have demonstrated some success, none have been FDA approved for clinical use. MSCs lose stemness ex vivo, decreasing therapeutic potential, and face additional barriers in vivo, decreasing therapeutic efficacy. Culture optimization and genetic modification of MSCs can overcome these barriers. Viral transduction is efficient, but limited by safety concerns related to mutagenicity of integrating viral vectors and potential immunogenicity of viral antigens. Nonviral delivery methods are safer, though limited by inefficiency and toxicity, and are flexible and scalable, making them attractive for engineering MSC therapies. Main text Transfection method and nucleic acid determine efficiency and expression profile in transfection of MSCs. Transfection methods include microinjection, electroporation, and nanocarrier delivery. Microinjection and electroporation are efficient, but are limited by throughput and toxicity. In contrast, a variety of nanocarriers have been demonstrated to transfer nucleic acids into cells, however nanocarrier delivery to MSCs has traditionally been inefficient. To improve efficiency, plasmid sequences can be optimized by choice of promoter, inclusion of DNA targeting sequences, and removal of bacterial elements. Instead of DNA, RNA can be delivered for rapid protein expression or regulation of endogenous gene expression. Beyond choice of nanocarrier and nucleic acid, transfection can be optimized by priming cells with media additives and cell culture surface modifications to modulate barriers of transfection. Media additives known to enhance MSC transfection include glucocorticoids and histone deacetylase inhibitors. Culture surface properties known to modulate MSC transfection include substrate stiffness and specific protein coating. If nonviral gene delivery to MSCs can be sufficiently improved, MSC therapies could be enhanced by transfection for guided differentiation and reprogramming, transplantation survival and directed homing, and secretion of therapeutics. We discuss utilized delivery methods and nucleic acids, and resulting efficiency and outcomes, in transfection of MSCs reported for such applications. Conclusion Recent developments in transfection methods, including nanocarrier and nucleic acid technologies, combined with chemical and physical priming of MSCs, may sufficiently improve transfection efficiency, enabling scalable genetic engineering of MSCs, potentially bringing effective MSC therapies to patients.
Collapse
Affiliation(s)
- Andrew Hamann
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE 68583-0726 USA
| | - Albert Nguyen
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE 68583-0726 USA
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE 68583-0726 USA
| |
Collapse
|
10
|
Xu Q, Zhang T, Wang Q, Jiang X, Li A, Li Y, Huang T, Li F, Hu Y, Ling D, Gao J. Uniformly sized iron oxide nanoparticles for efficient gene delivery to mesenchymal stem cells. Int J Pharm 2018; 552:443-452. [DOI: 10.1016/j.ijpharm.2018.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022]
|
11
|
Controlled Non-Viral Gene Delivery in Cartilage and Bone Repair: Current Strategies and Future Directions. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Bellavia D, Veronesi F, Carina V, Costa V, Raimondi L, De Luca A, Alessandro R, Fini M, Giavaresi G. Gene therapy for chondral and osteochondral regeneration: is the future now? Cell Mol Life Sci 2018; 75:649-667. [PMID: 28864934 PMCID: PMC11105387 DOI: 10.1007/s00018-017-2637-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/28/2017] [Indexed: 12/26/2022]
Abstract
Gene therapy might represent a promising strategy for chondral and osteochondral defects repair by balancing the management of temporary joint mechanical incompetence with altered metabolic and inflammatory homeostasis. This review analysed preclinical and clinical studies on gene therapy for the repair of articular cartilage defects performed over the last 10 years, focussing on expression vectors (non-viral and viral), type of genes delivered and gene therapy procedures (direct or indirect). Plasmids (non-viral expression vectors) and adenovirus (viral vectors) were the most employed vectors in preclinical studies. Genes delivered encoded mainly for growth factors, followed by transcription factors, anti-inflammatory cytokines and, less frequently, by cell signalling proteins, matrix proteins and receptors. Direct injection of the expression vector was used less than indirect injection of cells, with or without scaffolds, transduced with genes of interest and then implanted into the lesion site. Clinical trials (phases I, II or III) on safety, biological activity, efficacy, toxicity or bio-distribution employed adenovirus viral vectors to deliver growth factors or anti-inflammatory cytokines, for the treatment of osteoarthritis or degenerative arthritis, and tumour necrosis factor receptor or interferon for the treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Daniele Bellavia
- Rizzoli Orthopedic Institute, Bologna, Italy.
- Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopaedic Institute, Via Divisi 83, 90133, Palermo, Italy.
| | - F Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - V Carina
- Rizzoli Orthopedic Institute, Bologna, Italy
- Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopaedic Institute, Via Divisi 83, 90133, Palermo, Italy
| | - V Costa
- Rizzoli Orthopedic Institute, Bologna, Italy
- Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopaedic Institute, Via Divisi 83, 90133, Palermo, Italy
| | - L Raimondi
- Rizzoli Orthopedic Institute, Bologna, Italy
- Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopaedic Institute, Via Divisi 83, 90133, Palermo, Italy
| | - A De Luca
- Rizzoli Orthopedic Institute, Bologna, Italy
- Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopaedic Institute, Via Divisi 83, 90133, Palermo, Italy
| | - R Alessandro
- Biology and Genetics Unit, Department of Biopathology and Medical Biotechnology, University of Palermo, Palermo, Italy
| | - M Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - G Giavaresi
- Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopaedic Institute, Via Divisi 83, 90133, Palermo, Italy
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
13
|
Co-cultured the MSCs and cardiomyocytes can promote the growth of cardiomyocytes. Cytotechnology 2018; 70:793-806. [PMID: 29372466 DOI: 10.1007/s10616-018-0188-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022] Open
Abstract
Recently, the incidence of myocardial infarction has been increasing annually. Now cell therapy is a major new strategy in the treatment of this public health challenge. Most recently, evidences showed that MSCs can reduce the area of infarction and improve the heart function. In our study we found that MSCs could promote cardiomyocytes proliferation, inhibit the apoptosis of cardiomyocytes and promote cardiomyocytes autophagy function. These functions could be a therapeutic effect on myocardial infarction. At the same time, we first revealed that MSCs may achieve these functions by the activation of VEGF signaling pathways.
Collapse
|
14
|
Huang B, Jiang XC, Zhang TY, Hu YL, Tabata Y, Chen Z, Pluchino S, Gao JQ. Peptide modified mesenchymal stem cells as targeting delivery system transfected with miR-133b for the treatment of cerebral ischemia. Int J Pharm 2017; 531:90-100. [PMID: 28827201 DOI: 10.1016/j.ijpharm.2017.08.073] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/12/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have been regarded as potential targeting vehicles and demonstrated to exert therapeutic benefits for brain diseases. Direct homing to diseased tissue is crucial for stem cell-based therapy. In this study, a peptide-based targeting approach was established to enhance cell homing to cerebral ischemic lesion. Palmitic acid-peptide painted onto the cell membrane was able to direct MSCs to ischemic tissues without any observed cell cytotoxicity and influence on differentiation, thus reducing accumulation of cells in peripheral organs and increasing engraftment of cells in the targeted tissues. With enhanced cell homing, MSCs were used to deliver miR-133b to increase the expression level of miR-133b in an ischemic lesion and further improve therapeutic effects. This study is the first to develop MSCs co-modified with targeting peptide and microRNAs as potential targeting therapeutic agents. This targeting delivery system is expected to be applicable to other cell types and other diseases aside from stroke.
Collapse
Affiliation(s)
- Bing Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Xin-Chi Jiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Tian-Yuan Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Yu-Lan Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Stefano Pluchino
- Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridgeshire, UK
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
15
|
Daneshmandi S, Karimi MH, Pourfathollah AA. TGF-β engineered mesenchymal stem cells (TGF-β/MSCs) for treatment of Type 1 diabetes (T1D) mice model. Int Immunopharmacol 2017; 44:191-196. [PMID: 28110219 DOI: 10.1016/j.intimp.2017.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) are advantageous candidates for cell therapy of Type 1 diabetes (T1D). Considering immunomodulatory effect of MSC, in this study, we engineered MSCs with TGF-β gene to increase MSC potency for T1D therapy in mouse model. MATERIALS AND METHODS Two plans were designed for prevention and treatment of diabetes, respectively. In both of them, MSCs were injected i.v. and then, the diabetes features including serum insulin, blood glucose, glucose tolerance, splenocytes proliferation, and IL-4/IFN-γ production were evaluated. RESULTS TGF-β/MSCs treatment program resulted in the restoration of serum glucose after 3weeks, while prevention program could delay diabetes progression for two weeks. TGF-β/MSCs treatment elevated the levels of serum insulin and Th2 cytokine shift on 5th week after start of treatment. TGF-β/MSCs (and MSCs alone) could also diminish body weight and enhance mice survival comparing to untreated diabetic mice. CONCLUSION Engineered TGF-β/MSCs could restore some T1D features, including the regulation of adverse immune responses and could be potent tools for cell therapy of T1D comparing MSCs alone.
Collapse
Affiliation(s)
- Saeed Daneshmandi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Ali Akbar Pourfathollah
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
16
|
Adipose-Derived Stem Cells Cocultured with Chondrocytes Promote the Proliferation of Chondrocytes. Stem Cells Int 2017; 2017:1709582. [PMID: 28133485 PMCID: PMC5241498 DOI: 10.1155/2017/1709582] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Articular cartilage injury and defect caused by trauma and chronic osteoarthritis vascularity are very common, while the repair of injured cartilage remains a great challenge due to its limited healing capacity. Stem cell-based tissue engineering provides a promising treatment option for injured articular cartilage because of the cells potential for multiple differentiations. However, its application has been largely limited by stem cell type, number, source, proliferation, and differentiation. We hypothesized that (1) adipose-derived stem cells are ideal seed cells for articular cartilage repair because of their accessibility and abundance and (2) the microenvironment of articular cartilage could induce adipose-derived stem cells (ADSCs) to differentiate into chondrocytes. In order to test our hypotheses, we isolated stem cells from rabbit adipose tissues and cocultured these ADSCs with rabbit articular cartilage chondrocytes. We found that when ADSCs were cocultured with chondrocytes, the proliferation of articular cartilage chondrocytes was promoted, the apoptosis of chondrocytes was inhibited, and the osteogenic and chondrogenic differentiation of ADSCs was enhanced. The study on the mechanism of this coculture system indicated that the role of this coculture system is similar to the function of TGF-β1 in the promotion of chondrocytes.
Collapse
|
17
|
Frisch J, Cucchiarini M. Gene- and Stem Cell-Based Approaches to Regulate Hypertrophic Differentiation in Articular Cartilage Disorders. Stem Cells Dev 2016; 25:1495-1512. [DOI: 10.1089/scd.2016.0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Janina Frisch
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
18
|
Raftery RM, Walsh DP, Castaño IM, Heise A, Duffy GP, Cryan SA, O'Brien FJ. Delivering Nucleic-Acid Based Nanomedicines on Biomaterial Scaffolds for Orthopedic Tissue Repair: Challenges, Progress and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5447-5469. [PMID: 26840618 DOI: 10.1002/adma.201505088] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/27/2015] [Indexed: 06/05/2023]
Abstract
As well as acting to fill defects and allow for cell infiltration and proliferation in regenerative medicine, biomaterial scaffolds can also act as carriers for therapeutics, further enhancing their efficacy. Drug and protein delivery on scaffolds have shown potential, however, supraphysiological quantities of therapeutic are often released at the defect site, causing off-target side effects and cytotoxicity. Gene therapy involves the introduction of foreign genes into a cell in order to exert an effect; either replacing a missing gene or modulating expression of a protein. State of the art gene therapy also encompasses manipulation of the transcriptome by harnessing RNA interference (RNAi) therapy. The delivery of nucleic acid nanomedicines on biomaterial scaffolds - gene-activated scaffolds -has shown potential for use in a variety of tissue engineering applications, but as of yet, have not reached clinical use. The current state of the art in terms of biomaterial scaffolds and delivery vector materials for gene therapy is reviewed, and the limitations of current procedures discussed. Future directions in the clinical translation of gene-activated scaffolds are also considered, with a particular focus on bone and cartilage tissue regeneration.
Collapse
Affiliation(s)
- Rosanne M Raftery
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - David P Walsh
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Irene Mencía Castaño
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Andreas Heise
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Sally-Ann Cryan
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
19
|
Chen Z, Wei J, Zhu J, Liu W, Cui J, Li H, Chen F. Chm-1 gene-modified bone marrow mesenchymal stem cells maintain the chondrogenic phenotype of tissue-engineered cartilage. Stem Cell Res Ther 2016; 7:70. [PMID: 27150539 PMCID: PMC4858869 DOI: 10.1186/s13287-016-0328-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/01/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Marrow mesenchymal stem cells (MSCs) can differentiate into specific phenotypes, including chondrocytes, and have been widely used for cartilage tissue engineering. However, cartilage grafts from MSCs exhibit phenotypic alternations after implantation, including matrix calcification and vascular ingrowth. METHODS We compared chondromodulin-1 (Chm-1) expression between chondrocytes and MSCs. We found that chondrocytes expressed a high level of Chm-1. We then adenovirally transduced MSCs with Chm-1 and applied modified cells to engineer cartilage in vivo. RESULTS A gross inspection and histological observation indicated that the chondrogenic phenotype of the tissue-engineered cartilage graft was well maintained, and the stable expression of Chm-1 was detected by immunohistological staining in the cartilage graft derived from the Chm-1 gene-modified MSCs. CONCLUSIONS Our findings defined an essential role for Chm-1 in maintaining chondrogenic phenotype and demonstrated that Chm-1 gene-modified MSCs may be used in cartilage tissue engineering.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jing Wei
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jun Zhu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Wei Liu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jihong Cui
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Hongmin Li
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Fulin Chen
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China. .,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.
| |
Collapse
|
20
|
Hara ES, Ono M, Pham HT, Sonoyama W, Kubota S, Takigawa M, Matsumoto T, Young MF, Olsen BR, Kuboki T. Fluocinolone Acetonide Is a Potent Synergistic Factor of TGF-β3-Associated Chondrogenesis of Bone Marrow-Derived Mesenchymal Stem Cells for Articular Surface Regeneration. J Bone Miner Res 2015; 30:1585-96. [PMID: 25753754 PMCID: PMC5569386 DOI: 10.1002/jbmr.2502] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/09/2015] [Accepted: 03/04/2015] [Indexed: 12/18/2022]
Abstract
Articular cartilage repair remains a challenging problem. Based on a high-throughput screening and functional analysis, we found that fluocinolone acetonide (FA) in combination with transforming growth factor beta 3 (TGF-β3) strongly potentiated chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). In an in vivo cartilage defect model in knee joints of immunocompromised mice, transplantation of FA/TGF-β3-treated hBMSCs could completely repair the articular surface. Analysis of the intracellular pathways revealed that FA enhanced TGF-β3-induced phosphorylation of Smad2 and Smad3. Additionally, we performed a pathway array and found that FA activates the mTORC1/AKT pathway. Chemical inhibition of mTORC1 with rapamycin substantially suppressed FA effect, and inhibition of AKT completely repressed chondrogenesis of hBMSCs. Inhibition of glucocorticoid receptor with mifepristone also suppressed FA effect, suggesting that FA involves binding to the glucocorticoid receptor. Comparative analysis with other glucocorticoids (triamcinolone acetonide [TA] and dexamethasone [DEX]) revealed the unique ability of FA to repair articular cartilage surgical defects. Analysis of intracellular pathways showed that the mTORC1/AKT pathway and the glucocorticoid receptor was highly activated with FA and TA, but to a lesser extent with DEX. Collectively, these results show a unique ability of FA to enhance TGF-β3-associated chondrogenesis, and suggest that the FA/TGF-β3 combination may be used as major inducer of chondrogenesis in vitro. Additionally, FA/TGF-β3 could be potentially applied in a clinical setting to increase the efficiency of regenerative approaches based on chondrogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Emilio Satoshi Hara
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsuaki Ono
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hai Thanh Pham
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Wataru Sonoyama
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Marian F Young
- Craniofacial and Skeletal Diseases Branch, National Institutes of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD,, USA
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA,, USA
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
21
|
Zhao R, Peng X, Li Q, Song W. Effects of phosphorylatable short peptide-conjugated chitosan-mediated IL-1Ra and igf-1 gene transfer on articular cartilage defects in rabbits. PLoS One 2014; 9:e112284. [PMID: 25390659 PMCID: PMC4229204 DOI: 10.1371/journal.pone.0112284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/10/2014] [Indexed: 11/25/2022] Open
Abstract
Previously, we reported an improvement in the transfection efficiency of the plasmid DNA-chitosan (pDNA/CS) complex by the utilization of phosphorylatable short peptide-conjugated chitosan (pSP-CS). In this study, we investigated the effects of pSP-CS-mediated gene transfection of interleukin-1 receptor antagonist protein (IL-1Ra) combined with insulin-like growth factor-1 (IGF-1) in rabbit chondrocytes and in a rabbit model of cartilage defects. pBudCE4.1-IL-1Ra+igf-1, pBudCE4.1-IL-1Ra and pBudCE4.1-igf-1 were constructed and combined with pSP-CS to form pDNA/pSP-CS complexes. These complexes were transfected into rabbit primary chondrocytes or injected into the joint cavity. Seven weeks after treatment, all rabbits were sacrificed and analyzed. High levels of IL-1Ra and igf-1 expression were detected both in the cell culture supernatant and in the synovial fluid. In vitro, the transgenic complexes caused significant proliferation of chondrocytes, promotion of glycosaminoglycan (GAG) and collagen II synthesis, and inhibition of chondrocyte apoptosis and nitric oxide (NO) synthesis. In vivo, the exogenous genes resulted in increased collagen II synthesis and reduced NO and GAG concentrations in the synovial fluid; histological studies revealed that pDNA/pSP-CS treatment resulted in varying degrees of hyaline-like cartilage repair and Mankin score decrease. The co-expression of both genes produced greater effects than each single gene alone both in vitro and in vivo. The results suggest that pSP-CS is a good candidate for use in gene therapy for the treatment of cartilage defects and that igf-1 and IL-1Ra co-expression produces promising biologic effects on cartilage defects.
Collapse
Affiliation(s)
- Ronglan Zhao
- Department of Medical Laboratory, Shandong Provincial Key Laboratory of Clinical Laboratory Diagnostics, Weifang Medical University, Weifang, Shandong, China
| | - Xiaoxiang Peng
- Department of Medical Laboratory, Shandong Provincial Key Laboratory of Clinical Laboratory Diagnostics, Weifang Medical University, Weifang, Shandong, China
- * E-mail:
| | - Qian Li
- Department of Medical Laboratory, Shandong Provincial Key Laboratory of Clinical Laboratory Diagnostics, Weifang Medical University, Weifang, Shandong, China
| | - Wei Song
- Department of Medical Laboratory, Shandong Provincial Key Laboratory of Clinical Laboratory Diagnostics, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
22
|
Orth P, Rey-Rico A, Venkatesan JK, Madry H, Cucchiarini M. Current perspectives in stem cell research for knee cartilage repair. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2014; 7:1-17. [PMID: 24520197 PMCID: PMC3897321 DOI: 10.2147/sccaa.s42880] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protocols based on the delivery of stem cells are currently applied in patients, showing encouraging results for the treatment of articular cartilage lesions (focal defects, osteoarthritis). Yet, restoration of a fully functional cartilage surface (native structural organization and mechanical functions) especially in the knee joint has not been reported to date, showing the need for improved designs of clinical trials. Various sources of progenitor cells are now available, originating from adult tissues but also from embryonic or reprogrammed tissues, most of which have already been evaluated for their chondrogenic potential in culture and for their reparative properties in vivo upon implantation in relevant animal models of cartilage lesions. Nevertheless, particular attention will be needed regarding their safe clinical use and their potential to form a cartilaginous repair tissue of proper quality and functionality in the patient. Possible improvements may reside in the use of biological supplements in accordance with regulations, while some challenges remain in establishing standardized, effective procedures in the clinics.
Collapse
Affiliation(s)
- Patrick Orth
- Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Henning Madry
- Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany ; Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
23
|
Gene recombinant bone marrow mesenchymal stem cells as a tumor-targeted suicide gene delivery vehicle in pulmonary metastasis therapy using non-viral transfection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:257-67. [PMID: 23770065 DOI: 10.1016/j.nano.2013.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/21/2013] [Accepted: 06/06/2013] [Indexed: 12/13/2022]
Abstract
UNLABELLED One of the main limitations of anti-tumor gene therapy is the lack of an effective way to deliver therapeutic genes to tumor sites. Bone marrow mesenchymal stem cells (BMSCs) have been proposed as cellular delivery vehicles to tumor sites in tumor-targeted cancer gene therapy. Here, we investigated the therapeutic effects of cytomegalovirus-thymidine kinase expressing BMSCs (TK-BMSCs) on pulmonary melanoma metastasis combined with prodrug ganciclovir. BMSCs were successfully engineered through a non-viral gene vector. The gene recombinant BMSCs migrated to the pulmonary area and were found to have the tendency to target tumor nodules after systemic delivery. In vitro results demonstrate that the engineered BMSCs have significant suicide effects in the presence of ganciclovir in a dose-dependent manner and can exert a sufficient bystander effect on B16F10 tumor cells in co-culture experiments. In vivo studies confirmed the therapeutic effects of TK-BMSCs/ganciclovir on the metastasis tumor model. FROM THE CLINICAL EDITOR This study investigates the possibility of gene transfer via bone marrow mesenchymal stem cells in anti-cancer gene therapy using a metastatic melanoma model and cytomegalovirus-thymidine kinase expressing stem cells, demonstrating clear therapeutic effects.
Collapse
|