1
|
Paloyan A, Sargsyan A, Karapetyan MD, Hambardzumyan A, Kocharov S, Panosyan H, Dyukova K, Kinosyan M, Krueger A, Piergentili C, Stanley WA, Djoko KY, Baslé A, Marles‐Wright J, Antranikian G. Structural and biochemical characterisation of the N-carbamoyl-β-alanine amidohydrolase from Rhizobium radiobacter MDC 8606. FEBS J 2023; 290:5566-5580. [PMID: 37634202 PMCID: PMC10952681 DOI: 10.1111/febs.16943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
N-carbamoyl-β-alanine amidohydrolase (CβAA) constitutes one of the most important groups of industrially relevant enzymes used in the production of optically pure amino acids and derivatives. In this study, a CβAA-encoding gene from Rhizobium radiobacter strain MDC 8606 was cloned and overexpressed in Escherichia coli. The purified recombinant enzyme (RrCβAA) showed a specific activity of 14 U·mg-1 using N-carbamoyl-β-alanine as a substrate with an optimum activity at 55 °C and pH 8.0. In this work, we report also the first prokaryotic CβAA structure at a resolution of 2.0 Å. A discontinuous catalytic domain and a dimerisation domain attached through a flexible hinge region at the domain interface have been revealed. We identify key ligand binding residues, including a conserved glutamic acid (Glu131), histidine (H385) and arginine (Arg291). Our results allowed us to explain the preference of the enzyme for linear carbamoyl substrates, as large and branched carbamoyl substrates cannot fit in the active site of the enzyme. This work envisages the use of RrCβAA from R. radiobacter MDC 8606 for the industrial production of L-α-, L-β- and L-γ-amino acids. The structural analysis provides new insights on enzyme-substrate interaction, which shed light on engineering of CβAAs for high catalytic activity and broad substrate specificity.
Collapse
Affiliation(s)
- Ani Paloyan
- Scientific and Production Center “Armbiotechnology” of NAS RAYerevanArmenia
| | - Armen Sargsyan
- Scientific and Production Center “Armbiotechnology” of NAS RAYerevanArmenia
| | | | | | - Sergei Kocharov
- The Scientific Technological Centre of Organic and Pharmaceutical Chemistry SNPO of NAS RAYerevanArmenia
| | - Henry Panosyan
- The Scientific Technological Centre of Organic and Pharmaceutical Chemistry SNPO of NAS RAYerevanArmenia
| | - Karine Dyukova
- Scientific and Production Center “Armbiotechnology” of NAS RAYerevanArmenia
| | - Marina Kinosyan
- Scientific and Production Center “Armbiotechnology” of NAS RAYerevanArmenia
| | - Anna Krueger
- Authority for the Environment, Climate, Energy and Agriculture in HamburgHamburgGermany
| | - Cecilia Piergentili
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Will A. Stanley
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
| | | | - Arnaud Baslé
- Newcastle University Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Jon Marles‐Wright
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
- Newcastle University Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | | |
Collapse
|
2
|
Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi SA, Yazdian F, Awasthi MK, Taherzadeh MJ. Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms 2022; 10:2355. [PMID: 36557608 PMCID: PMC9781867 DOI: 10.3390/microorganisms10122355] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
For a long time, the genus Bacillus has been known and considered among the most applicable genera in several fields. Recent taxonomical developments resulted in the identification of more species in Bacillus-related genera, particularly in the order Bacillales (earlier heterotypic synonym: Caryophanales), with potential application for biotechnological and industrial purposes such as biofuels, bioactive agents, biopolymers, and enzymes. Therefore, a thorough understanding of the taxonomy, growth requirements and physiology, genomics, and metabolic pathways in the highly diverse bacterial order, Bacillales, will facilitate a more robust designing and sustainable production of strain lines relevant to a circular economy. This paper is focused principally on less-known genera and their potential in the order Bacillales for promising applications in the industry and addresses the taxonomical complexities of this order. Moreover, it emphasizes the biotechnological usage of some engineered strains of the order Bacillales. The elucidation of novel taxa, their metabolic pathways, and growth conditions would make it possible to drive industrial processes toward an upgraded functionality based on the microbial nature.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science II: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Xianyang 712100, China
| | | |
Collapse
|
3
|
Genome Sequence of Brevibacillus reuszeri NRRL NRS-1206T, an l-N-Carbamoylase-Producing Bacillus-Like Bacterium. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01063-15. [PMID: 26383671 PMCID: PMC4574376 DOI: 10.1128/genomea.01063-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brevibacillus reuszeri NRRL NRS-1206(T) is a Gram-positive, spore-forming, and strictly aerobic bacterium. Here, we report the draft 6.98-Mb genome sequence of B. reuszeri NRRL NRS-1206(T), which is the first genome information of B. reuszeri and will provide useful information for genomic taxonomy and phylogenomics of Bacillus-like bacteria.
Collapse
|