1
|
Ortiz-Islas E, Ponce-Juárez A, Tzompantzi-Morales F, Manríquez-Ramírez M, Rubio C, Calvillo-Velasco M, Chávez-Cortes G, Missirlis F, Rubio-Osornio M. Formation of intraneuronal iron deposits following local release from nanostructured silica injected into rat brain parenchyma. Heliyon 2024; 10:e27786. [PMID: 38524581 PMCID: PMC10958361 DOI: 10.1016/j.heliyon.2024.e27786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Nanostructured materials with controllable properties have been used to cage and release various types of compounds. In the present study, iron-loaded nanostructured sol-gel SiO2-Fe materials were prepared and injected into the rat brain to develop a method for gradual iron delivery into the neurons with the aims to avoid acute iron toxicity and develop an animal model of gradual, metal-induced neurodegeneration. Nanoparticles were prepared by the traditional method of hydrolysis and condensation reactions of tetraethyl orthosilicate at room temperature and subsequent heat treatment at 200 °C. FeSO4 was added in situ during the silica preparation. The resulting materials were characterized by UV-VIS and infrared spectroscopies, X-ray diffraction, and N2 adsorption-desorption. An in vitro ferrous sulfate release test was carried out in artificial cerebrospinal fluid as the release medium showing successful ferrous sulfate loading on nanostructured silica and sustained iron release during the test time of 10 h. Male Wistar rats administered with SiO2-Fe nanoparticles in the substantia nigra pars compacta (SNpc) showed significant intraneuronal increase of iron, in contrast to the animals administered with FeSO4 that showed severe neuronal loss, 72 h post-treatment. Both treatments induced lipid fluorescent product formation in the ventral midbrain, in contrast to iron-free SiO2 and PBS-only injection controls. Circling behavior was evaluated six days after the intranigral microinjection, considered as a behavioral end-point of brain damage. The apomorphine-induced ipsilateral turns in the treated animals presented significant differences in relation to the control groups, with FeSO4 administration leading to a dramatic phenotype, compared to a milder impact in SiO2-Fe administrated animals. Thus, the use of SiO2-Fe nanoparticles represents a slow iron release system useful to model the gradual iron-accumulation process observed in the SNpc of patients with idiopathic Parkinson's disease.
Collapse
Affiliation(s)
- E. Ortiz-Islas
- Laboratory of Molecular Neuropharmacology and Nanotechnology, National Institute of Neurology and Neurosurgery, Manuel Velasco Suarez. Insurgentes Sur 3877. Col. La Fama, 14269., Mexico City, Mexico
| | - A.A. Ponce-Juárez
- Doctoral Program in Biomedical Sciences, National University Autonomous of Mexico. Universidad 3004, Copilco, Coyoacán, 04510, Mexico City, Mexico
| | - F. Tzompantzi-Morales
- Metropolitan Autonomous University-Iztapalapa. Av. San Rafael Atlixco, Iztapalapa, 09340., Mexico City, Mexico
| | - M.E. Manríquez-Ramírez
- ESIQIE-National Polytechnic Institute. Instituto Politécnico Nacional s/n, Col. Zacatenco, 07738, Mexico City, Mexico
| | - C. Rubio
- Neurophysiology Department, National Institute of Neurology and Neurosurgery, Manuel Velasco Suarez. Insurgentes Sur 3877. Col. La Fama, 14269., Mexico City, Mexico
| | - M. Calvillo-Velasco
- Experimental Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery, Manuel Velasco Suarez. Insurgentes Sur 3877. Col. La Fama, 14269., Mexico City, Mexico
| | - G. Chávez-Cortes
- Experimental Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery, Manuel Velasco Suarez. Insurgentes Sur 3877. Col. La Fama, 14269., Mexico City, Mexico
| | - F. Missirlis
- Department of Physiology, Biophysics and Neuroscience, Cinvestav. Avenida Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360., Mexico City, Mexico
| | - M. Rubio-Osornio
- Neurochemistry Department, National Institute of Neurology and Neurosurgery, Manuel Velasco Suarez. Insurgentes Sur 3877. Col. La Fama, 14269., Mexico City, Mexico
| |
Collapse
|
2
|
Sharma DK, Pattnaik G, Behera A. Recent developments in nanoparticles for the treatment of diabetes. J Drug Target 2023; 31:908-919. [PMID: 37725445 DOI: 10.1080/1061186x.2023.2261077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Changes in the homeostasis of blood sugar levels are a hallmark of diabetes mellitus, an incurable metabolic condition, for which the first-line treatment is the subcutaneous injection of insulin. However, this method of administration is linked to low patient compliance because of the possibility of local infection, discomfort and pain. To enable the administration of the peptide through more palatable paths without requiring an injection, like by oral routes, the use of nanoparticles as insulin carriers has been suggested. The use of nanoparticles usually improves the bioavailability and physicochemical stability of the loaded medicine. The utilisation of several forms of nanoparticles (like lipid and polymeric nanoparticles, micelles, dendrimers, liposomes, niosomes, nanoemulsions and drug nanosuspensions) is discussed in this article as a way to improve the administration of various oral hypoglycaemic medications when compared to conventional treatments.
Collapse
Affiliation(s)
- Dinesh Kumar Sharma
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
3
|
Sun Y, Wang S, Wang M, Wang M, Liu C, Liu L. Development of a biomimetic DNA delivery system by encapsulating polyethyleneimine functionalized silicon quantum dots with cell membranes. Colloids Surf B Biointerfaces 2023; 230:113507. [PMID: 37562122 DOI: 10.1016/j.colsurfb.2023.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Quantum dots (QDs) are renowned for their remarkable optoelectronic properties, making them suitable for applications such as bioimaging and optoelectronics. However, their use in gene delivery has been restricted due to the low DNA loading capacity. This study aimed to develop a biomimetic DNA delivery system by encapsulating polyethyleneimine (PEI) functionalized silicon QDs (SiQDs) with cell membranes and evaluate its potential as a gene vector in vitro. To achieve this, hydrophilic dispersed silicon QDs (PQDs) were prepared through a one-pot hydrothermal reaction of PEI and 3-Aminopropyltrimethoxysilane (APTMS). Subsequently, red blood cell membrane (RBCM) encapsulated biomimetic QDs (CM-PQDs) was obtained through the extrusion method. The CM-PQDs exhibited higher DNA loading capacity and better stability than naked SiQDs. The CM-PQDs/DNA complex was effectively taken up by cells, as observed through the fluorescence characteristics of QDs themselves. Both CM-P10QDs (prepared with PEI10k) and CM-P25QDs (prepared with PEI25k) could deliver DNA into cells and express the reporter protein successfully. CM-P25QDs showed a higher transfection efficiency of 77.32% in 293 T cells and 47.11% in HeLa cells than SiQDs and CM-P10QDs. The results also indicated that cell membrane encapsulation could effectively reduce the cytotoxicity of SiQDs further. Therefore, the study concludes that CM-PQDs have the potential to serve as a safe and traceable biomimetic gene delivery system.
Collapse
Affiliation(s)
- Yanlin Sun
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shibei Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mengying Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingjie Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chaobing Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liang Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
4
|
Application of Sol–Gels Modified with Natural Plants Extracts as Stationary Phases in Open-Tubular Capillary Electrochromatography. Gels 2022; 8:gels8040198. [PMID: 35448099 PMCID: PMC9029637 DOI: 10.3390/gels8040198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Ethanol extracts of three widely growing plants were added to silica sol–gel solutions, which were subsequently applied as wall surface modifiers in inner quartz capillaries. Modified capillaries were used for open-tubular capillary electrochromatographic separation of nucleotides and amino groups containing biological compounds (neurotransmitters, amino acids and oligopeptides). The experiments were performed at physiological pH 7.40, and eventual changes of effective mobilities were calculated. Specific compounds characteristic for each plant were tested as sol–gel additives as well, and thus-modified capillaries were used for the separations of the same analytes under identical conditions. The aim of this study was to find out possible interactions between physiological compounds and extracts of freely available plants anchorded in the sol-gel stationary phase in the flowing system. Even though the amount of the modifier in each capillary is very small, basic statistical evaluation showed some not negligible changes in effective mobility of tested analytes. These changes were bigger than ±5% for separations of nucleotides in capillaries with curcuma, Moringa or the mixture of synthetic additives as the sol-gel aditive, and for separations of amino compounds where these changes varying by additive, analyte by analyte.
Collapse
|
5
|
Genotoxicity Assessment of Metal-Based Nanocomposites Applied in Drug Delivery. MATERIALS 2021; 14:ma14216551. [PMID: 34772074 PMCID: PMC8585152 DOI: 10.3390/ma14216551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022]
Abstract
Nanocomposites as drug delivery systems (e.g., metal nanoparticles) are being exploited for several applications in the biomedical field, from therapeutics to diagnostics. Green nanocomposites stand for nanoparticles of biocompatible, biodegradable and non-toxic profiles. When using metal nanoparticles for drug delivery, the question of how hazardous these "virus-sized particles" can be is posed, due to their nanometer size range with enhanced reactivity compared to their respective bulk counterparts. These structures exhibit a high risk of being internalized by cells and interacting with the genetic material, with the possibility of inducing DNA damage. The Comet Assay, or Single-Cell Gel Electrophoresis (SCGE), stands out for its capacity to detect DNA strand breaks in eukaryotic cells. It has huge potential in the genotoxicity assessment of nanoparticles and respective cells' interactions. In this review, the Comet assay is described, discussing several examples of its application in the genotoxicity evaluation of nanoparticles commonly administered in a set of routes (oral, skin, inhaled, ocular and parenteral administration). In the nanoparticles boom era, where guidelines for their evaluation are still very limited, it is urgent to ensure their safety, alongside their quality and efficacy. Comet assay or SCGE can be considered an essential tool and a reliable source to achieve a better nanotoxicology assessment of metal nanoparticles used in drug delivery.
Collapse
|
6
|
Souto EB, Souto SB, Campos JR, Severino P, Pashirova TN, Zakharova LY, Silva AM, Durazzo A, Lucarini M, Izzo AA, Santini A. Nanoparticle Delivery Systems in the Treatment of Diabetes Complications. Molecules 2019; 24:E4209. [PMID: 31756981 PMCID: PMC6930606 DOI: 10.3390/molecules24234209] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus, an incurable metabolic disease, is characterized by changes in the homeostasis of blood sugar levels, being the subcutaneous injection of insulin the first line treatment. This administration route is however associated with limited patient's compliance, due to the risk of pain, discomfort and local infection. Nanoparticles have been proposed as insulin carriers to make possible the administration of the peptide via friendlier pathways without the need of injection, i.e., via oral or nasal routes. Nanoparticles stand for particles in the nanometer range that can be obtained from different materials (e.g., polysaccharides, synthetic polymers, lipid) and are commonly used with the aim to improve the physicochemical stability of the loaded drug and thereby its bioavailability. This review discusses the use of different types of nanoparticles (e.g., polymeric and lipid nanoparticles, liposomes, dendrimers, niosomes, micelles, nanoemulsions and also drug nanosuspensions) for improved delivery of different oral hypoglycemic agents in comparison to conventional therapies.
Collapse
Affiliation(s)
- Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Selma B. Souto
- Department of Endocrinology, Hospital de São João, Alameda Prof. Hernâni Monteiro, 4200–319 Porto, Portugal;
| | - Joana R. Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal;
| | - Patricia Severino
- Tiradentes Institute, University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju-SE 49010-390, Brazil;
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
| | - Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8, ul. Arbuzov, Kazan 420088, Russia; (T.N.P.); (L.Y.Z.)
| | - Lucia Y. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8, ul. Arbuzov, Kazan 420088, Russia; (T.N.P.); (L.Y.Z.)
- Department of Organic Chemistry, Kazan State Technological University, ul. Karla Marksa 68, Kazan 420015, Russia
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- Department of Biology and Environment, University of Trás-os Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Angelo A. Izzo
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy
| |
Collapse
|
7
|
Zakharova LY, Pashirova TN, Doktorovova S, Fernandes AR, Sanchez-Lopez E, Silva AM, Souto SB, Souto EB. Cationic Surfactants: Self-Assembly, Structure-Activity Correlation and Their Biological Applications. Int J Mol Sci 2019; 20:E5534. [PMID: 31698783 PMCID: PMC6888607 DOI: 10.3390/ijms20225534] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
The development of biotechnological protocols based on cationic surfactants is a modern trend focusing on the fabrication of antimicrobial and bioimaging agents, supramolecular catalysts, stabilizers of nanoparticles, and especially drug and gene nanocarriers. The main emphasis given to the design of novel ecologically friendly and biocompatible cationic surfactants makes it possible to avoid the drawbacks of nanoformulations preventing their entry to clinical trials. To solve the problem of toxicity various ways are proposed, including the use of mixed composition with nontoxic nonionic surfactants and/or hydrotropic agents, design of amphiphilic compounds bearing natural or cleavable fragments. Essential advantages of cationic surfactants are the structural diversity of their head groups allowing of chemical modification and introduction of desirable moiety to answer the green chemistry criteria. The latter can be exemplified by the design of novel families of ecological friendly cleavable surfactants, with improved biodegradability, amphiphiles with natural fragments, and geminis with low aggregation threshold. Importantly, the development of amphiphilic nanocarriers for drug delivery allows understanding the correlation between the chemical structure of surfactants, their aggregation behavior, and their functional activity. This review focuses on several aspects related to the synthesis of innovative cationic surfactants and their broad biological applications including antimicrobial activity, solubilization of hydrophobic drugs, complexation with DNA, and catalytic effect toward important biochemical reaction.
Collapse
Affiliation(s)
- Lucia Ya. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8, ul. Arbuzov, Kazan 420088, Russia; (L.Y.Z.); (T.N.P.)
- Department of Organic Chemistry, Kazan State Technological University, ul. Karla Marksa 68, Kazan 420015, Russia
| | - Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8, ul. Arbuzov, Kazan 420088, Russia; (L.Y.Z.); (T.N.P.)
| | - Slavomira Doktorovova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.D.); (A.R.F.); (E.S.-L.)
| | - Ana R. Fernandes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.D.); (A.R.F.); (E.S.-L.)
| | - Elena Sanchez-Lopez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.D.); (A.R.F.); (E.S.-L.)
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28702 Madrid, Spain
| | - Amélia M. Silva
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Selma B. Souto
- Department of Endocrinology of S. João Hospital, Alameda Prof. Hernâni Monteiro, 4200–319 Porto, Portugal;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.D.); (A.R.F.); (E.S.-L.)
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Rasti M, Hesaraki S, Nezafati N. Effects of GPTMS concentration and powder to liquid ratio on the flowability and biodegradation behaviors of 45S5 bioglass/tragacanth bioactive composite pastes. J Appl Polym Sci 2019. [DOI: 10.1002/app.47604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahtab Rasti
- Department of Nanotechnology and Advanced Materials; Materials and Energy Research Center; Karaj Iran
| | - Saeed Hesaraki
- Department of Nanotechnology and Advanced Materials; Materials and Energy Research Center; Karaj Iran
| | - Nader Nezafati
- Department of Nanotechnology and Advanced Materials; Materials and Energy Research Center; Karaj Iran
| |
Collapse
|
9
|
Yesil-Celiktas O, Pala C, Cetin-Uyanikgil EO, Sevimli-Gur C. Synthesis of silica-PAMAM dendrimer nanoparticles as promising carriers in Neuro blastoma cells. Anal Biochem 2017; 519:1-7. [DOI: 10.1016/j.ab.2016.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/24/2016] [Accepted: 12/06/2016] [Indexed: 01/28/2023]
|