Wang M, Jiang S, Zhou L, Wang C, Mao R, Ponnusamy M. Efficient production of recombinant glycoprotein D of herpes simplex virus type 2 in Pichia pastoris and its protective efficacy against viral challenge in mice.
Arch Virol 2016;
162:701-711. [PMID:
27868164 DOI:
10.1007/s00705-016-3154-7]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022]
Abstract
Herpes simplex virus type 2 (HSV-2) infection is the leading cause of genital ulcer disease and a significant public health concern. However, there are no approved vaccines available to prevent HSV-2 infection. The glycoprotein D (gD) of HSV-2 is the most important candidate antigen for vaccine development. In this study, a truncated form of gD (codons 1-340, gD1-340) was produced as a secretory protein in the methylotrophic yeast Pichia pastoris. The recombinant gD1-340 with a His6 tag was purified to homogeneity by one-step affinity chromatography. Mice immunized with the recombinant gD1-340 developed high levels of antigen-specific antibody responses with HSV-2 neutralizing activity. Immunization with the recombinant gD1-340 conferred significant protection against lethal HSV-2 infection in mice. Moreover, measurement of the secretion of gD1-340-specific cytokines demonstrated that the recombinant gD1-340 induced mixed Th1/Th2 cellular immune responses. These findings indicated that P. pastoris-derived gD1-340 represents a promising HSV-2 vaccine candidate with strong immunogenicity and prophylactic efficacy.
Collapse