1
|
Transglycosylation toward naringenin-7-O-glucoside using an N180H mutant of Coprinopsis cinerea endo-β-N-acetylglucosaminidase. Biochem Biophys Res Commun 2020; 530:155-159. [PMID: 32828279 DOI: 10.1016/j.bbrc.2020.06.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 11/22/2022]
Abstract
Flavonoids are generally glycosylated, and the glycan moieties of flavonoid glycosides are known to greatly affect their physicochemical and biological properties. Thus, the development of a variety of tools for glycan remodeling of flavonoid glycosides is highly desired. An endo-β-N-acetylglucosaminidase mutant Endo-CC N180H, which is developed as an excellent chemoenzymatic tool for creating sialylglycoproteins, was employed for the glycosylation of flavonoids. Endo-CC N180H transferred the sialyl biantennary glycans from the sialylglyco peptide to pNP-GlcNAc and narigenin-7-O-glucoside. The kinetic parameters of Endo-CC N180H towards SGP and pNP-GlcNAc were determined. Flavonoid glucosides harboring a 1,3-diol structure in the glucose moieties acted as substrates of Endo-CC N180H. We proposed that the sialyl biantennary glycan transfer to the flavonoid by Endo-CC N180H could pave the way for the improvement of the inherent biological functions of the flavonoids and creation of novel flavonoid glycoside derivatives for future human health benefits including foods and drugs.
Collapse
|
2
|
Manabe S, Yamaguchi Y, Matsumoto K, Fuchigami H, Kawase T, Hirose K, Mitani A, Sumiyoshi W, Kinoshita T, Abe J, Yasunaga M, Matsumura Y, Ito Y. Characterization of Antibody Products Obtained through Enzymatic and Nonenzymatic Glycosylation Reactions with a Glycan Oxazoline and Preparation of a Homogeneous Antibody-Drug Conjugate via Fc N-Glycan. Bioconjug Chem 2019; 30:1343-1355. [PMID: 30938513 DOI: 10.1021/acs.bioconjchem.9b00132] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycan engineering of antibodies has received considerable attention. Although various endo-β- N-acetylglucosaminidase mutants have been developed for glycan remodeling, a side reaction has been reported between glycan oxazoline and amino groups. In this study, we performed a detailed characterization for antibody products obtained through enzymatic and nonenzymatic reactions with the aim of maximizing the efficiency of the glycosylation reaction with fewer side products. The reactions were monitored by an ultraperformance liquid chromatography system using an amide-based wide-pore column. The products were characterized by liquid chromatography coupled with tandem mass spectrometry. The side reactions were suppressed by adding glycan oxazoline in a stepwise manner under slightly acidic conditions. Through a combination of an azide-carrying glycan transfer reaction under optimized conditions and a bio-orthogonal reaction, a potent cytotoxic agent monomethyl auristatin E was site-specifically conjugated at N-glycosylated Asn297 with a drug-to-antibody ratio of 4. The prepared antibody-drug conjugate exhibited cytotoxicity against HER2-expressing cells.
Collapse
Affiliation(s)
- Shino Manabe
- Synthetic Cellular Chemistry Laboratory , RIKEN , Hirosawa, Wako , Saitama , 351-0198 Japan
| | - Yoshiki Yamaguchi
- Synthetic Cellular Chemistry Laboratory , RIKEN , Hirosawa, Wako , Saitama , 351-0198 Japan.,Structural Glycobiology Team , RIKEN , Hirosawa, Wako , Saitama , 351-0198 Japan
| | - Kana Matsumoto
- Structural Glycobiology Team , RIKEN , Hirosawa, Wako , Saitama , 351-0198 Japan
| | - Hirobumi Fuchigami
- Exploratory Oncology Research & Clinical Trial Center , National Cancer Center , Kashiwanoha, Kashiwa , Chiba 277-8577 Japan
| | - Taiji Kawase
- Nihon Waters KK, Kitashinagawa, Shinagawa, Tokyo , 140-0001 Japan
| | - Kenji Hirose
- Nihon Waters KK, Kitashinagawa, Shinagawa, Tokyo , 140-0001 Japan
| | - Ai Mitani
- Fushimi Pharmaceutical Co. Ltd., Nakatsu, Marugame , Kagawa , 763-8605 Japan
| | - Wataru Sumiyoshi
- Fushimi Pharmaceutical Co. Ltd., Nakatsu, Marugame , Kagawa , 763-8605 Japan
| | - Takashi Kinoshita
- Fushimi Pharmaceutical Co. Ltd., Nakatsu, Marugame , Kagawa , 763-8605 Japan
| | - Junpei Abe
- Synthetic Cellular Chemistry Laboratory , RIKEN , Hirosawa, Wako , Saitama , 351-0198 Japan
| | - Masahiro Yasunaga
- Exploratory Oncology Research & Clinical Trial Center , National Cancer Center , Kashiwanoha, Kashiwa , Chiba 277-8577 Japan
| | - Yasuhiro Matsumura
- Exploratory Oncology Research & Clinical Trial Center , National Cancer Center , Kashiwanoha, Kashiwa , Chiba 277-8577 Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory , RIKEN , Hirosawa, Wako , Saitama , 351-0198 Japan
| |
Collapse
|
3
|
Benkoulouche M, Fauré R, Remaud-Siméon M, Moulis C, André I. Harnessing glycoenzyme engineering for synthesis of bioactive oligosaccharides. Interface Focus 2019; 9:20180069. [PMID: 30842872 DOI: 10.1098/rsfs.2018.0069] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Combined with chemical synthesis, the use of glycoenzyme biocatalysts has shown great synthetic potential over recent decades owing to their remarkable versatility in terms of substrates and regio- and stereoselectivity that allow structurally controlled synthesis of carbohydrates and glycoconjugates. Nonetheless, the lack of appropriate enzymatic tools with requisite properties in the natural diversity has hampered extensive exploration of enzyme-based synthetic routes to access relevant bioactive oligosaccharides, such as cell-surface glycans or prebiotics. With the remarkable progress in enzyme engineering, it has become possible to improve catalytic efficiency and physico-chemical properties of enzymes but also considerably extend the repertoire of accessible catalytic reactions and tailor novel substrate specificities. In this review, we intend to give a brief overview of the advantageous use of engineered glycoenzymes, sometimes in combination with chemical steps, for the synthesis of natural bioactive oligosaccharides or their precursors. The focus will be on examples resulting from the three main classes of glycoenzymes specialized in carbohydrate synthesis: glycosyltransferases, glycoside hydrolases and glycoside phosphorylases.
Collapse
Affiliation(s)
- Mounir Benkoulouche
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Régis Fauré
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Magali Remaud-Siméon
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Claire Moulis
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Isabelle André
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| |
Collapse
|
4
|
Abstract
The many advances in glycoscience have more and more brought to light the crucial role of glycosides and glycoconjugates in biological processes. Their major influence on the functionality and stability of peptides, cell recognition, health and immunity and many other processes throughout biology has increased the demand for simple synthetic methods allowing the defined syntheses of target glycosides. Additional interest in glycoside synthesis has arisen with the prospect of producing sustainable materials from these abundant polymers. Enzymatic synthesis has proven itself to be a promising alternative to the laborious chemical synthesis of glycosides by avoiding the necessity of numerous protecting group strategies. Among the biocatalytic strategies, glycosynthases, genetically engineered glycosidases void of hydrolytic activity, have gained much interest in recent years, enabling not only the selective synthesis of small glycosides and glycoconjugates, but also the production of highly functionalized polysaccharides. This review provides a detailed overview over the glycosylation possibilities of the variety of glycosynthases produced until now, focusing on the transfer of the most common glucosyl-, galactosyl-, xylosyl-, mannosyl-, fucosyl-residues and of whole glycan blocks by the different glycosynthase enzyme variants.
Collapse
Affiliation(s)
- Marc R Hayes
- Institut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, 52426 Jülich, Germany.
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, 52426 Jülich, Germany.
- Forschungszentrum Jülich, IBG-1: Biotechnology, 52426 Jülich, Germany.
| |
Collapse
|
5
|
Tomabechi Y, Katoh T, Kunishima M, Inazu T, Yamamoto K. Chemo-enzymatic synthesis of a glycosylated peptide containing a complex N-glycan based on unprotected oligosaccharides by using DMT-MM and Endo-M. Glycoconj J 2017; 34:481-487. [PMID: 28523604 DOI: 10.1007/s10719-017-9770-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 11/29/2022]
Abstract
For chemo-enzymatic synthesis of a glycosylated peptide, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) was used for the synthesis of a N-acetylglucosaminyl peptide and a pseudoglycopeptide by solid-phase peptide synthesis without the requirement of protecting groups on the carbohydrate. We also performed transglycosylation of an N-glycan to the N-acetylglucosaminyl peptide using endo-β-N-acetylglucosaminidase from Mucor hiemalis (Endo-M) to synthesize a glycopeptide containing a complex N-glycan.
Collapse
Affiliation(s)
- Yusuke Tomabechi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Toshihiko Katoh
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Munetaka Kunishima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Toshiyuki Inazu
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Kenji Yamamoto
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
| |
Collapse
|
6
|
Katoh T, Katayama T, Tomabechi Y, Nishikawa Y, Kumada J, Matsuzaki Y, Yamamoto K. Generation of a Mutant Mucor hiemalis Endoglycosidase That Acts on Core-fucosylated N-Glycans. J Biol Chem 2016; 291:23305-23317. [PMID: 27629418 DOI: 10.1074/jbc.m116.737395] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 11/06/2022] Open
Abstract
Endo-β-N-acetylglucosaminidase M (Endo-M), an endoglycosidase from the fungus Mucor hiemalis, is a useful tool for chemoenzymatic synthesis of glycoconjugates, including glycoprotein-based therapeutics having a precisely defined glycoform, by virtue of its transglycosylation activity. Although Endo-M has been known to act on various N-glycans, it does not act on core-fucosylated N-glycans, which exist widely in mammalian glycoproteins, thus limiting its application. Therefore, we performed site-directed mutagenesis on Endo-M to isolate mutant enzymes that are able to act on mammalian-type core-α1,6-fucosylated glycans. Among the Endo-M mutant enzymes generated, those in which the tryptophan at position 251 was substituted with alanine or asparagine showed altered substrate specificities. Such mutant enzymes exhibited increased hydrolysis of a synthetic α1,6-fucosylated trimannosyl core structure, whereas their activity on the afucosylated form decreased. In addition, among the Trp-251 mutants, the W251N mutant was most efficient in hydrolyzing the core-fucosylated substrate. W251N mutants could act on the immunoglobulin G-derived core-fucosylated glycopeptides and human lactoferrin glycoproteins. This mutant was also capable of transferring the sialyl glycan from an activated substrate intermediate (sialyl glyco-oxazoline) onto an α1,6-fucosyl-N-acetylglucosaminyl biotin. Furthermore, the W251N mutant gained a glycosynthase-like activity when a N175Q substitution was introduced and it caused accumulation of the transglycosylation products. These findings not only give insights into the substrate recognition mechanism of glycoside hydrolase family 85 enzymes but also widen their scope of application in preparing homogeneous glycoforms of core-fucosylated glycoproteins for the production of potent glycoprotein-based therapeutics.
Collapse
Affiliation(s)
- Toshihiko Katoh
- From the Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan,
| | - Takane Katayama
- From the Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.,the Host-Microbe Interaction Research Laboratory and
| | - Yusuke Tomabechi
- the Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan, and
| | - Yoshihide Nishikawa
- Tokyo Chemical Industry Co., Ltd., 6-15-9 Toshima, Kita-ku, Tokyo 114-0003, Japan
| | - Jyunichi Kumada
- Tokyo Chemical Industry Co., Ltd., 6-15-9 Toshima, Kita-ku, Tokyo 114-0003, Japan
| | - Yuji Matsuzaki
- Tokyo Chemical Industry Co., Ltd., 6-15-9 Toshima, Kita-ku, Tokyo 114-0003, Japan
| | - Kenji Yamamoto
- the Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan, and
| |
Collapse
|