Odor reduction using hydrogen sulfide-removing bacteria in sludge filtration systems: Ferrous-oxidizing bacteria and sulfur-oxidizing bacteria.
J Biosci Bioeng 2023;
135:395-401. [PMID:
36878769 DOI:
10.1016/j.jbiosc.2023.02.005]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/07/2023]
Abstract
The preconditioning of digested sludge in sludge filtration systems produces hydrogen sulfide (H2S), a major odor-causing source. This study evaluated the effects of adding H2S-removing bacteria to sludge-filtration systems. Ferrous-oxidizing bacteria (FOB) and sulfur-oxidizing bacteria (SOB) were mass-cultivated in a hybrid bioreactor equipped with an internal circulation system. In this bioreactor, FOB and SOB effectively removed >99% of H2S; however, the acidic conditions created by adding a coagulant during digested sludge preconditioning were more favorable for FOB than for SOB. In batch tests, SOB and FOB removed 94 ± 1.1% and 99 ± 0.1% of H2S, respectively; therefore, digested sludge preconditioning proved more suitable for FOB activity than SOB activity. The results revealed that the optimal FOB addition ratio was 0.2%, validated using a pilot filtration system. Moreover, the 57.5 ± 2.9 ppm H2S generated in the sludge preconditioning step was reduced to 0.01 ± 0.01 ppm after adding 0.2% FOB. Therefore, the results of this study will be useful because they provide a process for biologically removing odor-causing sources without affecting the dewatering efficiency of the filtration system.
Collapse