1
|
Gomez AVA, Bustillo S, Nerli BB. Recovery of acid proteases from fishery discards with aqueous micellar two-phase systems and their use for X-ray film recycling. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
2
|
Suleman S, Schrubaji K, Filippou C, Ignatova S, Hewitson P, Huddleston J, Karda R, Waddington SN, Themis M. Rapid and inexpensive purification of adenovirus vectors using an optimised aqueous two-phase technology. J Virol Methods 2022; 299:114305. [PMID: 34626684 PMCID: PMC9757833 DOI: 10.1016/j.jviromet.2021.114305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/24/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
Adenoviruses (AdVs) are used as gene therapy vectors to treat human diseases and as vaccines against COVID-19. AdVs are produced by transfecting human embryonic kidney 239 (HEK293) or PER.C6 virus producer cells with AdV plasmid vectors or infecting these cells withcell lysates containing replication-defective AdV. Cell lysates can be purified further by caesium chloride or chromatographic protocols to research virus seed stocks (RVSS) for characterisation to high quality master virus seed stocks (MVSS) and working virus seed stocks (WVSS) before downstream production of pure, high titre AdV. Lysates are poorly infectious, block filtration columns and have limited storage capability. Aqueous two-phase systems (ATPS) are an alternative method for AdV purification that rapidly generates cleaner RVSS for characterisation to MVSS. After testing multiple ATPS formulations, an aqueous mixture of 20 % PEG 600 and 20 % (NH4)2SO4 (w/w) was found most effective for AdV partitioning, producing up to 97+3% yield of high-titre virus that was devoid of aggregates both effective in vitro and in vivo with no observable cytotoxicity. Importantly, AdV preparations stored at -20 °C or 4 °C show negligible loss of titre and are suitable for downstream processing to clinical grade to support the need for AdV vaccines.
Collapse
Affiliation(s)
- Saqlain Suleman
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Kuteiba Schrubaji
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Chrysovalanto Filippou
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Svetlana Ignatova
- Department of Chemical Engineering, College of Engineering, Design & Physical Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Peter Hewitson
- Department of Chemical Engineering, College of Engineering, Design & Physical Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Jonathan Huddleston
- Department of Chemical Engineering, College of Engineering, Design & Physical Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Rajvinder Karda
- Gene Transfer Technology, EGA Institute for Women’s Health, University College London, London, WC1E 6HX, UK
| | - Simon N. Waddington
- Gene Transfer Technology, EGA Institute for Women’s Health, University College London, London, WC1E 6HX, UK,MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Michael Themis
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK; Division of Ecology and Evolution, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
4
|
Jamaluddin N, Ariff AB, Wong FWF. Purification of a Bacteriocin-Like Inhibitory Substance Derived from Pediococcus acidilactici Kp10 by an Aqueous Micellar Two-Phase System. Biotechnol Prog 2018; 35:e2719. [PMID: 30299004 DOI: 10.1002/btpr.2719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/27/2018] [Accepted: 09/16/2018] [Indexed: 01/09/2023]
Abstract
Aqueous micellar two-phase system (AMTPS) is an extractive technique of biomolecule, where it is based on the differential partitioning behavior of biomolecule between a micelle-rich and a micelle-poor phase. In this study, an AMTPS composed of a nonionic surfactant, Triton X-100 (TX-100) was used for purifying a bacteriocin-like inhibitory substance (BLIS) derived from Pediococcus acidilactici Kp10. The influences of the surfactant concentration and the effect of additives on the partitioning behavior and activity yield of the BLIS were investigated. The obtained coexistence curves showed that the mixtures of solutions composed of different surfactant concentrations (5-30% w/w) and 50% w/w crude load were able to separate into two phases at temperatures of above 60 °C. The optimum conditions for BLIS partitioning using the TX-100-based AMTPS were: TX-100 concentration of 22.5% w/w, CFCS load of 50% w/w, incubation time of 30 min at 75 °C, and back-extraction using acetone precipitation. This optimal partitioning resulted in an activity yield of 64.3% and a purification factor of 5.8. Moreover, the addition of several additives, such as sorbitol, KCl, dioctyl sulfosuccinate sodium salt, and Coomassie® Brilliant Blue, demonstrated no improvement in the BLIS separation, except for Amberlite® resin XAD-4, where the activity yield was improved to 70.3% but the purification factor was reduced to 2.3. Results from this study have demonstrated the potential and applicability of TX-100-based AMTPS as a primary recovery method for the BLIS from a complex fermentation broth of P. acidilactici Kp10. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2719, 2019.
Collapse
Affiliation(s)
- Norfariza Jamaluddin
- Depart. of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Arbakariya B Ariff
- Depart. of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fadzlie Wong Faizal Wong
- Depart. of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|