1
|
Xiao C, Liu X, Pan Y, Li Y, Qin L, Yan Z, Feng Y, Zhao M, Huang M. Tailored UPRE2 variants for dynamic gene regulation in yeast. Proc Natl Acad Sci U S A 2024; 121:e2315729121. [PMID: 38687789 PMCID: PMC11087760 DOI: 10.1073/pnas.2315729121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Genetic elements are foundational in synthetic biology serving as vital building blocks. They enable programming host cells for efficient production of valuable chemicals and recombinant proteins. The unfolded protein response (UPR) is a stress pathway in which the transcription factor Hac1 interacts with the upstream unfolded protein response element (UPRE) of the promoter to restore endoplasmic reticulum (ER) homeostasis. Here, we created a UPRE2 mutant (UPRE2m) library. Several rounds of screening identified many elements with enhanced responsiveness and a wider dynamic range. The most active element m84 displayed a response activity 3.72 times higher than the native UPRE2. These potent elements are versatile and compatible with various promoters. Overexpression of HAC1 enhanced stress signal transduction, expanding the signal output range of UPRE2m. Through molecular modeling and site-directed mutagenesis, we pinpointed the DNA-binding residue Lys60 in Hac1(Hac1-K60). We also confirmed that UPRE2m exhibited a higher binding affinity to Hac1. This shed light on the mechanism underlying the Hac1-UPRE2m interaction. Importantly, applying UPRE2m for target gene regulation effectively increased both recombinant protein production and natural product synthesis. These genetic elements provide valuable tools for dynamically regulating gene expression in yeast cell factories.
Collapse
Affiliation(s)
- Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Yuyang Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Yanling Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Ling Qin
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Zhibo Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| |
Collapse
|
2
|
Ito Y, Ishigami M, Hashiba N, Nakamura Y, Terai G, Hasunuma T, Ishii J, Kondo A. Avoiding entry into intracellular protein degradation pathways by signal mutations increases protein secretion in Pichia pastoris. Microb Biotechnol 2022; 15:2364-2378. [PMID: 35656803 PMCID: PMC9437885 DOI: 10.1111/1751-7915.14061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022] Open
Abstract
In our previous study, we serendipitously discovered that protein secretion in the methylotrophic yeast Pichia pastoris is enhanced by a mutation (V50A) in the mating factor alpha (MFα) prepro‐leader signal derived from Saccharomyces cerevisiae. In the present study, we investigated 20 single‐amino‐acid substitutions, including V50A, located within the MFα signal peptide, indicating that V50A and several single mutations alone provided significant increase in production of the secreted proteins. In addition to hydrophobicity index analysis, both an unfolded protein response (UPR) biosensor analysis and a microscopic observation showed a clear difference on the levels of UPR induction and mis‐sorting of secretory protein into vacuoles among the wild‐type and mutated MFα signal peptides. This work demonstrates the importance of avoiding entry of secretory proteins into the intracellular protein degradation pathways, an observation that is expected to contribute to the engineering of strains with increased production of recombinant secreted proteins.
Collapse
Affiliation(s)
- Yoichiro Ito
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Misa Ishigami
- Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan
| | - Noriko Hashiba
- Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan
| | - Yasuyuki Nakamura
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Goro Terai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan.,Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| |
Collapse
|
3
|
Zou S, Jia Y, He Q, Zhang K, Ban R, Hong J, Zhang M. Comparison of the Unfolded Protein Response in Cellobiose Utilization of Recombinant Angel- and W303-1A-Derived Yeast Expressing β-Glucosidase. Front Bioeng Biotechnol 2022; 10:837720. [PMID: 35433667 PMCID: PMC9008459 DOI: 10.3389/fbioe.2022.837720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The unfolded protein response (UPR) is one of the most important protein quality control mechanisms in cells. At least, three factors are predicted to activate the UPR in yeast cells during fermentation. Using UPRE-lacZ as a reporter, we constructed two indicator strains, KZ and WZ, based on Angel-derived K-a and W303-1A strains, respectively, and investigated their UPR response to tunicamycin, ethanol, and acetic acid. Then, four strains carrying plasmids BG-cwp2 and BG were obtained to realize the displaying and secretion of β-glucosidase, respectively. The results of cellobiose utilization assays indicated interactions between the UPR and the metabolic burden between the strain source, anchoring moiety, oxygen supply, and cellobiose concentration. Meanwhile, as expected, growth (OD600), β-glucosidase, and β-galactosidase activities were shown to have a positive inter-relationship, in which the values of the KZ-derived strains were far lower than those of the WZ-derived strains. Additionally, extra metabolic burden by displaying over secreting was also much more serious in strain KZ than in strain WZ. The maximum ethanol titer of the four strains (KZ (BG-cwp2), KZ (BG), WZ (BG-cwp2), and WZ (BG)) in oxygen-limited 10% cellobiose fermentation was 3.173, 5.307, 5.495, and 5.486% (v/v), respectively, and the acetic acid titer ranged from 0.038 to 0.060% (v/v). The corresponding maximum values of the ratio of β-galactosidase activity to that of the control were 3.30, 5.29, 6.45, and 8.72, respectively. Under aerobic conditions with 2% cellobiose, those values were 3.79, 4.97, 6.99, and 7.67, respectively. A comparison of the results implied that β-glucosidase expression durably induced the UPR, and the effect of ethanol and acetic acid depended on the titer produced. Further study is necessary to identify ethanol- or acid-specific target gene expression. Taken together, our results indicated that the host strain W303-1A is a better secretory protein producer, and the first step to modify strain K-a for cellulosic ethanol fermentation would be to relieve the bottleneck of UPR capacity. The results of the present study will help to identify candidate host strains and optimize expression and fermentation by quantifying UPR induction.
Collapse
Affiliation(s)
- Shaolan Zou
- Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, China
- *Correspondence: Shaolan Zou, ; Jiefang Hong,
| | - Yudie Jia
- Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qing He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Kun Zhang
- Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Rui Ban
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jiefang Hong
- Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, China
- *Correspondence: Shaolan Zou, ; Jiefang Hong,
| | - Minhua Zhang
- Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Kroukamp H, Peng K, Paulsen IT, den Haan R. Fluorescence-Based Biosensors for the Detection of the Unfolded Protein Response. Methods Mol Biol 2022; 2378:19-30. [PMID: 34985691 DOI: 10.1007/978-1-0716-1732-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The unfolded protein response (UPR) is a highly conserved protein quality control mechanism of eukaryotic cells. Aberrations in this response have been linked to several human diseases, including retinitis pigmentosa and several cancers, and have been shown to have a drastic impact on recombinant protein yields in fungal, insect, and mammalian cell lines. Here, we describe the use of in vivo biosensors to measure and characterize this dynamic cellular response, specifically for detecting the UPR induced by protein overproduction stress in the model cell factory Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Heinrich Kroukamp
- Department of Molecular Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Kai Peng
- Department of Molecular Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Ian T Paulsen
- Department of Molecular Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
5
|
den Haan R, Rose SH, Cripwell RA, Trollope KM, Myburgh MW, Viljoen-Bloom M, van Zyl WH. Heterologous production of cellulose- and starch-degrading hydrolases to expand Saccharomyces cerevisiae substrate utilization: Lessons learnt. Biotechnol Adv 2021; 53:107859. [PMID: 34678441 DOI: 10.1016/j.biotechadv.2021.107859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
Selected strains of Saccharomyces cerevisiae are used for commercial bioethanol production from cellulose and starch, but the high cost of exogenous enzymes for substrate hydrolysis remains a challenge. This can be addressed through consolidated bioprocessing (CBP) where S. cerevisiae strains are engineered to express recombinant glycoside hydrolases during fermentation. Looking back at numerous strategies undertaken over the past four decades to improve recombinant protein production in S. cerevisiae, it is evident that various steps in the protein production "pipeline" can be manipulated depending on the protein of interest and its anticipated application. In this review, we briefly introduce some of the strategies and highlight lessons learned with regards to improved transcription, translation, post-translational modification and protein secretion of heterologous hydrolases. We examine how host strain selection and modification, as well as enzyme compatibility, are crucial determinants for overall success. Finally, we discuss how lessons from heterologous hydrolase expression can inform modern synthetic biology and genome editing tools to provide process-ready yeast strains in future. However, it is clear that the successful expression of any particular enzyme is still unpredictable and requires a trial-and-error approach.
Collapse
Affiliation(s)
- Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Shaunita H Rose
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Kim M Trollope
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marthinus W Myburgh
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | | | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
6
|
Peng K, Kroukamp H, Pretorius IS, Paulsen IT. Yeast Synthetic Minimal Biosensors for Evaluating Protein Production. ACS Synth Biol 2021; 10:1640-1650. [PMID: 34126009 DOI: 10.1021/acssynbio.0c00633] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The unfolded protein response (UPR) is a highly conserved cellular response in eukaryotic cells to counteract endoplasmic reticulum (ER) stress, typically triggered by unfolded protein accumulation. In addition to its relevance to human diseases like cancer, the induction of the UPR has a significant impact on the recombinant protein production in eukaryotic cell factories, including the industrial workhorseSaccharomyces cerevisiae. Being able to accurately detect and measure this ER stress response in single cells, enables the rapid optimization of protein production conditions and high-throughput strain selection strategies. Current methodologies to monitor the UPR in S. cerevisiae are often temporally and spatially removed from the cultivation stage or lack updated systematic evaluation. To this end, we constructed and systematically evaluated a series of high-throughput UPR sensors by different designs, incorporating either yeast native UPR promoters or novel synthetic minimal UPR promoters. The native promoters of DER1 and ERO1 were identified to have suitable UPR biosensor properties and served as an expression level guide for orthogonal sensor benchmarking. Our best synthetic minimal sensor is only 98 bp in length, has minimal homology to other native yeast sequences and displayed superior sensor characteristics. The synthetic minimal UPR sensor was able to accurately distinguish between cells expressing different heterologous proteins and between the different secretion levels of the same protein. This work demonstrated the potential of synthetic UPR biosensors as high-throughput tools to predict the protein production capacity of strains, interrogate protein properties hampering their secretion, and guide rational engineering strategies for optimal heterologous protein production.
Collapse
Affiliation(s)
- Kai Peng
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Heinrich Kroukamp
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Ian T. Paulsen
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
7
|
Zhang S, Greening DW, Hong Y. Recent advances in bioanalytical methods to measure proteome stability in cells. Analyst 2021; 146:2097-2109. [DOI: 10.1039/d0an01547d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarizes recent bioanalytical methods for measuring and profiling protein stability in cells on a proteome-wide scale, which can provide insights for proteostasis and associated diseases.
Collapse
Affiliation(s)
- Shouxiang Zhang
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - David W. Greening
- Molecular Proteomics
- Baker Heart and Diabetes Institute
- Melbourne
- Australia
- Department of Biochemistry and Genetics
| | - Yuning Hong
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| |
Collapse
|
8
|
Exploiting strain diversity and rational engineering strategies to enhance recombinant cellulase secretion by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2020; 104:5163-5184. [PMID: 32337628 DOI: 10.1007/s00253-020-10602-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Consolidated bioprocessing (CBP) of lignocellulosic material into bioethanol has progressed in the past decades; however, several challenges still exist which impede the industrial application of this technology. Identifying the challenges that exist in all unit operations is crucial and needs to be optimised, but only the barriers related to the secretion of recombinant cellulolytic enzymes in Saccharomyces cerevisiae will be addressed in this review. Fundamental principles surrounding CBP as a biomass conversion platform have been established through the successful expression of core cellulolytic enzymes, namely β-glucosidases, endoglucanases, and exoglucanases (cellobiohydrolases) in S. cerevisiae. This review will briefly address the challenges involved in the construction of an efficient cellulolytic yeast, with particular focus on the secretion efficiency of cellulases from this host. Additionally, strategies for studying enhanced cellulolytic enzyme secretion, which include both rational and reverse engineering approaches, will be discussed. One such technique includes bio-engineering within genetically diverse strains, combining the strengths of both natural strain diversity and rational strain development. Furthermore, with the advancement in next-generation sequencing, studies that utilise this method of exploiting intra-strain diversity for industrially relevant traits will be reviewed. Finally, future prospects are discussed for the creation of ideal CBP strains with high enzyme production levels.Key Points• Several challenges are involved in the construction of efficient cellulolytic yeast, in particular, the secretion efficiency of cellulases from the hosts.• Strategies for enhancing cellulolytic enzyme secretion, a core requirement for CBP host microorganism development, include both rational and reverse engineering approaches.• One such technique includes bio-engineering within genetically diverse strains, combining the strengths of both natural strain diversity and rational strain development.
Collapse
|