1
|
Zou S, Ma Y, Zhao L, Chen X, Gao H, Chen J, Xue Y, Zheng Y. Revealing the regulatory impact of nutrient on the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid by Beauveria bassiana biofilms through comparative transcriptomics analyse. Bioprocess Biosyst Eng 2024; 47:1803-1814. [PMID: 39080012 DOI: 10.1007/s00449-024-03070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 09/29/2024]
Abstract
Carbon and nitrogen play a fundamental role in the architecture of fungal biofilm morphology and metabolite production. However, the regulatory mechanism of nutrients remains to be fully understood. In this study, the formation of Beauveria bassiana biofilm and the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid in two media with different carbon and nitrogen sources (GY: Glucose as a carbon source and yeast extract as a nitrogen source, MT: Mannitol as a carbon source and tryptone as a nitrogen source) were compared. R-HPPA production increased 2.85-fold in media MT than in media GY. Different fungal biofilm morphology and architecture were discovered in media GY and MT. Comparative transcriptomics revealed up-regulation of mitogen-activated protein kinase (MAPK) pathway and polysaccharides degradation genes affecting mycelial morphology and polysaccharides yield of the extracellular polymeric substances (EPS) in MT medium biofilms. Upregulation of genes related to NADH synthesis (carbon metabolism, amino acid metabolism, glutamate cycle) causes NADH accumulation and triggers an increase in R-HPPA production. These data provide a valuable basis for future studies on regulating fungal biofilm morphology and improving the production of high-value compounds.
Collapse
Affiliation(s)
- Shuping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yizhi Ma
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Lixiang Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiaomin Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hailing Gao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Juan Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yaping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
2
|
Hu HF, Zhou HY, Wang XL, Wang YS, Xue YP, Zheng YG. Enhanced ( R)-2-(4-Hydroxyphenoxy)Propionic Acid Production by Beauveria bassiana: Optimization of Culture Medium and H 2O 2 Supplement Under Static Cultivation. J Microbiol Biotechnol 2020; 30:1252-1260. [PMID: 32522969 PMCID: PMC9728401 DOI: 10.4014/jmb.2002.02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
(R)-2-(4-hydroxyphenoxy)propionic acid (HPOPA) is a key intermediate for the preparation of aryloxyphenoxypropionic acid herbicides (R-isomer). In order to improve the HPOPA production from the substrate (R)-2-phenoxypropionic acid (POPA) with Beauveria bassiana CCN-A7, static cultivation and H2O2 addition were attempted and found to be conducive to the task at hand. This is the first report on HPOPA production under static cultivation and reactive oxygen species (ROS) induction. On this premise, the cultivation conditions and fermentation medium compositions were optimized. As a result, the optimal carbon source, organic nitrogen source, and inorganic nitrogen source were determined to be glucose, peptone, and ammonium sulfate, respectively. The optimal inoculum size and fermentation temperature were 13.3% and 28°C, respectively. The significant factors including glucose, peptone, and H2O2, identified based on Plackett-Burman design, were further optimized through Central Composite Design (CCD). The optimal concentrations/amounts were as follows: glucose 38.81 g/l, peptone 7.28 g/l, and H2O2 1.08 ml/100 ml. Under the optimized conditions, HPOPA titer was improved from 9.60 g/l to 19.53 g/l, representing an increase of 2.03- fold. The results obtained in this work will provide novel strategies for improving the biosynthesis of hydroxy aromatics.
Collapse
Affiliation(s)
- Hai-Feng Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, P.R. China,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Hai-Yan Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, P.R. China,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Xian-Lin Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, P.R. China,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yuan-Shan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, P.R. China,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, P.R. China,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China,Corresponding author Phone/Fax: +86-571-88320614 E-mail:
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, P.R. China,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|