1
|
Gu C, Chen J, Huang X, Jiang Y, Ou N, Yang D, Jiang M, Pan L. The Impact of Chitinase Binding Domain Truncation on the Properties of CaChi18B from Chitinilyticum aquatile CSC-1. Mar Drugs 2025; 23:93. [PMID: 40137279 PMCID: PMC11943626 DOI: 10.3390/md23030093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
The chitinase binding domain (ChBD) plays a crucial role in the properties of enzymes. To assess its impact, we cloned a truncated mutant of the chitinase gene CaChi18B from the novel chitinase-producing facultative anaerobic bacterium Chitinilyticum aquatile CSC-1, designated as CaChi18B_ΔChBDs. The recombinant chitinase was successfully expressed and purified, exhibiting a specific activity of 3.48 U/mg on colloidal chitin, with optimal conditions at 45 °C and pH 6.0, and retaining over 80% activity at temperatures up to 40 °C. Kinetic analysis revealed that the Km value was 1.159 mg mL-1 and the Vmax was 10.37 μM min-1 mg-1. Compared to CaChi18B_ΔChBD1, which has only the first ChBD truncated at the N-terminus, CaChi18B_ΔChBDs exhibited minor changes in the optimal temperature and pH, while the Km and Vmax values increased significantly. CaChi18B_ΔChBDs exhibited tolerance to various metal ions, with K+ and NH4+ enhancing activity, while Cu2+ significantly inhibited it. Most organic reagents had minimal impact, except for formic acid, which severely reduced activity. The primary hydrolysis product in the initial phase was GlcNAc, contrasting with (GlcNAc)2 for CaChi18B_ΔChBD1. These findings indicated that the ChBD influences the enzyme's Km, Vmax, and product distribution, enhancing our understanding of ChBD's roles and advancing chitin utilization.
Collapse
Affiliation(s)
- Chenxi Gu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (C.G.); (X.H.)
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007, China; (J.C.); (D.Y.)
| | - Jianrong Chen
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007, China; (J.C.); (D.Y.)
| | - Xinyue Huang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (C.G.); (X.H.)
| | - Yongqiang Jiang
- Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China; (Y.J.); (N.O.)
| | - Na Ou
- Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China; (Y.J.); (N.O.)
| | - Dengfeng Yang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007, China; (J.C.); (D.Y.)
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (C.G.); (X.H.)
| | - Lixia Pan
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007, China; (J.C.); (D.Y.)
| |
Collapse
|
2
|
Gao J, Ali MY, Kamaraj Y, Zhang Z, Weike L, Sethupathy S, Zhu D. A comprehensive review on biological funnel mechanism in lignin valorization: Pathways and enzyme dynamics. Microbiol Res 2024; 287:127835. [PMID: 39032264 DOI: 10.1016/j.micres.2024.127835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Lignin, a significant byproduct of the paper and pulp industry, is attracting interest due to its potential utilization in biomaterial-based sectors and biofuel production. Investigating biological methods for converting lignin into valuable products is crucial for effective utilization and has recently gained growing attention. Several microorganisms effectively decomposed low molecular weight lignins, transforming them into intermediate compounds via upper and lower metabolic pathways. This review focuses on assessing bacterial metabolic pathways involved in the breakdown of lignin into aromatic compounds and their subsequent utilization by different bacteria through various metabolic pathways. Understanding these pathways is essential for developing efficient synthetic metabolic systems to valorize lignin and obtain valuable industrial aromatic chemicals. The concept of "biological funneling," which involves examining key enzymes, their interactions, and the complex metabolic pathways associated with lignin conversion, is crucial in lignin valorization. By manipulating lignin metabolic pathways and utilizing biological routes, many aromatic compounds can be synthesized within cellular factories. Although there is insufficient evidence regarding the complete metabolism of polyaromatic hydrocarbons by particular microorganisms, understanding lignin-degrading enzymes, regulatory mechanisms, and interactions among various enzyme systems is essential for optimizing lignin valorization. This review highlights recent advancements in lignin valorization, bio-funneling, multi-omics, and analytical characterization approaches for aromatic utilization. It provides up-to-date information and insights into the latest research findings and technological innovations. The review offers valuable insights into the future potential of biological routes for lignin valorization.
Collapse
Affiliation(s)
- Jiayue Gao
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mohamed Yassin Ali
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China; Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Yoganathan Kamaraj
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhenghao Zhang
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Li Weike
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Yang L, Qu M, Wang Z, Huang S, Wang Q, Wei M, Li F, Yang D, Pan L. Biochemical Properties of a Novel Cold-Adapted GH19 Chitinase with Three Chitin-Binding Domains from Chitinilyticum aquatile CSC-1 and Its Potential in Biocontrol of Plant Pathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19581-19593. [PMID: 39190598 DOI: 10.1021/acs.jafc.4c02559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
GH19 (glycoside hydrolase 19) chitinases play crucial roles in the enzymatic conversion of chitin and biocontrol of phytopathogenic fungi. Herein, a novel multifunctional chitinase of GH19 (CaChi19A), which contains three chitin-binding domains (ChBDs), was successfully cloned from Chitinilyticum aquatile CSC-1 and heterologously expressed in Escherichia coli. We also generated truncated mutants of CaChi19A_ΔI, CaChi19A_ΔIΔII, and CaChi19A_CatD consisting of two ChBDs and a catalytic domain, one ChBD and a catalytic domain, and only a catalytic domain, respectively. CaChi19A, CaChi19A_ΔI, CaChi19A_ΔIΔII, and CaChi19A_CatD exhibited cold adaptation, as their relative enzyme activities at 5 °C were 40.7, 51.6, 66.2, and 82.6%, respectively. Compared with CaChi19A and other variants, CaChi19A_ΔIΔII demonstrated a higher level of stability below 50 °C and retained relatively high activity over a wide pH range of 5-12. Analysis of the hydrolysis products revealed that CaChi19A and CaChi19A_ΔIΔII exhibit exoacting, endoacting, and N-acetyl-β-d-glucosaminidase activities toward colloidal chitin. Furthermore, CaChi19A and CaChi19A_ΔIΔII exhibited inhibitory effects on the hyphal growth of Fusarium oxysporum, Fusarium redolens, Fusarium fujikuroi, Fusarium solani, and Coniothyrium diplodiella, thereby illustrating effective biocontrol activity. These results indicated that CaChi19A and CaChi19A_ΔIΔII show advantages in some applications where low temperatures were demanded in industries as well as the biocontrol of fungal diseases in agriculture.
Collapse
Affiliation(s)
- Liyan Yang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Mingbo Qu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhou Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Shiyong Huang
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning 530001, China
| | - Qingyan Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Maochun Wei
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning 530001, China
| | - Fei Li
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Dengfeng Yang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Lixia Pan
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
4
|
Guo HZ, Wang D, Yang HT, Wu YL, Li YC, Xia GH, Zhang XY. Heterologous Expression and Characterization of a pH-Stable Chitinase from Micromonospora aurantiaca with a Potential Application in Chitin Degradation. Mar Drugs 2024; 22:287. [PMID: 38921598 PMCID: PMC11204758 DOI: 10.3390/md22060287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
To promote the bioconversion of marine chitin waste into value-added products, we expressed a novel pH-stable Micromonospora aurantiaca-derived chitinase, MaChi1, in Escherichia coli and subsequently purified, characterized, and evaluated it for its chitin-converting capacity. Our results indicated that MaChi1 is of the glycoside hydrolase (GH) family 18 with a molecular weight of approximately 57 kDa, consisting of a GH18 catalytic domain and a cellulose-binding domain. We recorded its optimal activity at pH 5.0 and 55 °C. It exhibited excellent stability in a wide pH range of 3.0-10.0. Mg2+ (5 mM), and dithiothreitol (10 mM) significantly promoted MaChi1 activity. MaChi1 exhibited broad substrate specificity and hydrolyzed chitin, chitosan, cellulose, soluble starch, and N-acetyl chitooligosaccharides with polymerization degrees ranging from three to six. Moreover, MaChi1 exhibited an endo-type cleavage pattern, and it could efficiently convert colloidal chitin into N-acetyl-D-glucosamine (GlcNAc) and (GlcNAc)2 with yields of 227.2 and 505.9 mg/g chitin, respectively. Its high chitin-degrading capacity and exceptional pH tolerance makes it a promising tool with potential applications in chitin waste treatment and bioactive oligosaccharide production.
Collapse
Affiliation(s)
- Han-Zhong Guo
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
| | - Dou Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
| | - Hui-Ting Yang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
| | - Yu-Le Wu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
| | - Yong-Cheng Li
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
| | - Guang-Hua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xue-Ying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Sharma A, Arya SK, Singh J, Kapoor B, Bhatti JS, Suttee A, Singh G. Prospects of chitinase in sustainable farming and modern biotechnology: an update on recent progress and challenges. Biotechnol Genet Eng Rev 2024; 40:310-340. [PMID: 36856523 DOI: 10.1080/02648725.2023.2183593] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023]
Abstract
Chitinases are multifunctional biocatalysts for the pest control and useful in modern biotechnology and pharmaceutical industries. Chemical-based fungicides and insecticides have caused more severe effects on environment and human health. Many pathogenic fungal species and insects became resistant to the chemical pesticides. The resistant fungi emerged as a multidrug resistant also and less susceptible insects are not possible to control adequately. Chitinases have an immense potential to be exploited as a biopesticide against fungi and insects. The direct use of chitinase in liquid formulation or whole microbial enzyme producing cells, both act as antagonistically against the pests. Chitinase can disintegrate the fungal cell wall and insect integument that holds the chitin as a vital structural component. Moreover, chitinase is applied for the synthesis of pharmaceutically important chitooligosaccharides. Chitinase producing microbes have the huge potential to utilize against the waste management of sea food remains like shells of crustaceans. Chitinase is valuable for the synthesis of protoplasts from industrially important fungi, further it act as the biocontrol agent of malaria and dengue fever causing larvae of mosquitoes. Chitinases also have been successfully used in wine and single cell protein producing industries. Present review is illustrating the updated information on the state of the art of different applications of chitinases in agriculture and biotechnology industry. It also bestows the understanding to the readers about the areas of extensively studied and the field where there is still much left to be done.
Collapse
Affiliation(s)
- Anindita Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| | | | - Jatinder Singh
- Department of Horticulture, SAGR, Lovely Professional University, Phagwara, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, Phagwara, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine School of Health Sciences, Central University of Punjab, India
| | - Ashish Suttee
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University Phagwara, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
6
|
Chen J, Yang D, Zhang Y, Yang L, Wang Q, Jiang M, Pan L. A novel bi-functional cold-adaptive chitinase from Chitinilyticum aquatile CSC-1 for efficient synthesis of N-acetyl-D-glucosaminidase. Int J Biol Macromol 2024; 259:129063. [PMID: 38159710 DOI: 10.1016/j.ijbiomac.2023.129063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
In order to better utilize chitinolytic enzymes to produce high-value N-acetyl-D-glucosamine (GlcNAc) from chitinous waste, there is an urgent need to explore bi-functional chitinases with exceptional properties of temperature, pH and metal tolerance. In this study, we cloned and characterized a novel bi-functional cold-adaptive chitinase called CaChi18A from a newly isolated strain, Chitinilyticum aquatile CSC-1, in Bama longevity village of Guangxi Province, China. The activity of CaChi18A at 50 °C was 4.07 U/mg. However, it exhibited significant catalytic activity even at 5 °C. Its truncated variant CaChi18A_ΔChBDs, containing only catalytic domain, demonstrated significant activity levels, exceeding 40 %, over a temperature range of 5-60 °C and a pH range of 3 to 10. It was noteworthy that it displayed tolerance towards most metal ions at a final concentration of 0.1 mM, including Fe3+ and Cu2+ ions, retaining 122.52 ± 0.17 % and 116.42 ± 1.52 % activity, respectively. Additionally, it exhibited favorable tolerance towards organic solvents with the exception of formic acid. Interestedly, CaChi18A and CaChi18A_ΔChBDs had a low Km value towards colloidal chitin (CC), 0.94 mg mL-1 and 2.13 mg mL-1, respectively. Both enzymes exhibited chitobiosidase and N-acetyl-D-glucosaminidase activities, producing GlcNAc as the primary product when hydrolyzing CC. The high activities across a broader temperature and pH range, strong environmental adaptability, and hydrolytic properties of CaChi18A_ΔChBDs suggested that it could be a promising candidate for GlcNAc production.
Collapse
Affiliation(s)
- Jianrong Chen
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China; College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Dengfeng Yang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Yunkai Zhang
- College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Liyan Yang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Qingyan Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Lixia Pan
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China; College of Food and Quality Engineering, Nanning University, Nanning 530200, China.
| |
Collapse
|
7
|
Zhu X, Ma K, Sun M, Zhang J, Liu L, Niu S. Isolation and identification of pathogens of Morchella sextelata bacterial disease. Front Microbiol 2023; 14:1231353. [PMID: 38029130 PMCID: PMC10657878 DOI: 10.3389/fmicb.2023.1231353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Morel mushroom (Morchella spp.) is a rare edible and medicinal fungus distributed worldwide. It is highly desired by the majority of consumers. Bacterial diseases have been commonly observed during artificial cultivation of Morchella sextelata. Bacterial pathogens spread rapidly and cause a wide range of infections, severely affecting the yield and quality of M. sextelata. In this study, two strains of bacterial pathogens, named M-B and M-5, were isolated, cultured, and purified from the tissues of the infected M. sextelata. Koch's postulates were used to determine the pathogenicity of bacteria affecting M. sextelata, and the pathogens were identified through morphological observation, physiological and biochemical analyses, and 16S rRNA gene sequence analysis. Subsequently, the effect of temperature on the growth of pathogenic bacteria, the inhibitory effect of the bacteria on M. sextelata on plates, and the changes in mycelial morphology of M. sextelata mycelium were analyzed when M. sextelata mycelium was double-cultured with pathogenic bacteria on plates. The results revealed that M-B was Pseudomonas chlororaphis subsp. aureofaciens and M-5 was Bacillus subtilis. Strain M-B started to multiply at 10-15°C, and strain M-5 started at 15-20°C. On the plates, the pathogenic bacteria also produced significant inhibition of M. sextelata mycelium, and the observation of mycelial morphology under the scanning electron microscopy revealed that the inhibited mycelium underwent obvious drying and crumpling, and the healthy mycelium were more plump. Thus, this study clarified the pathogens, optimal growth environment, and characteristics of M. sextelata bacterial diseases, thereby providing valuable basic data for the disease prevention and control of Morchella production.
Collapse
|
8
|
Chanworawit K, Wangsoonthorn P, Deevong P. Characterization of chitinolytic bacteria newly isolated from the termite Microcerotermes sp. and their biocontrol potential against plant pathogenic fungi. Biosci Biotechnol Biochem 2023; 87:1077-1091. [PMID: 37328422 DOI: 10.1093/bbb/zbad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Chitinolytic bacteria were isolated from guts and shells of the termite Microcerotermes sp. Among the nineteen morphologically different chitinolytic isolates, three isolates with highest extracellular chitinase production ratio (≥2.26) were selected. Based on molecular identification of 16S rRNA gene sequences and biochemical characterizations using API test kits and MALDI-TOF MS, these isolates were closely related to Bacillus thuringiensis (Mc_E02) and Paenibacillus species (Mc_E07 and Mc_G06). Isolate Mc_E02 exhibited the highest chitinase-specific activity (2.45 U/mg protein) at 96 h of cultivation, and the enzyme activity was optimized at pH 7.0 and 45 °C. The isolate showed highest and broad-spectrum inhibitory effect against three phytopathogenic fungi (Curvularia lunata, Colletotrichum capsici, and Fusarium oxysporum). Its 36-kDa chitinase exhibited the biomass reduction and mycelium inhibition against all fungi, with highest effects to Curvularia lunata. This research provides novel information about termite chitinolytic bacteria and their effective chitinase, with potential use as biocontrol tool.
Collapse
Affiliation(s)
- Kittipong Chanworawit
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pachara Wangsoonthorn
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pinsurang Deevong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
9
|
Zhao Q, Fan L, Deng C, Ma C, Zhang C, Zhao L. Bioconversion of chitin into chitin oligosaccharides using a novel chitinase with high chitin-binding capacity. Int J Biol Macromol 2023:125241. [PMID: 37301336 DOI: 10.1016/j.ijbiomac.2023.125241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Chitin is the second largest renewable biomass resource in nature, it can be enzymatically degraded into high-value chitin oligosaccharides (CHOSs) by chitinases. In this study, a chitinase (ChiC8-1) was purified and biochemically characterized, its structure was analyzed by molecular modeling. ChiC8-1 had a molecular mass of approximately 96 kDa, exhibited its optimal activity at pH 6.0 and 50 °C. The Km and Vmax values of ChiC8-1 towards colloidal chitin were 10.17 mg mL-1 and 13.32 U/mg, respectively. Notably, ChiC8-1 showed high chitin-binding capacity, which may be related to the two chitin binding domains in the N-terminal. Based on the unique properties of ChiC8-1, a modified affinity chromatography method, which combines protein purification with chitin hydrolysis process, was developed to purify ChiC8-1 while hydrolyzing chitin. In this way, 9.36 ± 0.18 g CHOSs powder was directly obtained by hydrolyzing 10 g colloidal chitin with crude enzyme solution. The CHOSs were composed of 14.77-2.83 % GlcNAc and 85.23-97.17 % (GlcNAc)2 at different enzyme-substrate ratio. This process simplifies the tedious purification and separation steps, and may enable its potential application in the field of green production of chitin oligosaccharides.
Collapse
Affiliation(s)
- Qiong Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Liqiang Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Chen Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Chunyu Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Chunyue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
| |
Collapse
|
10
|
Bacterial chitinases: genetics, engineering and applications. World J Microbiol Biotechnol 2022; 38:252. [DOI: 10.1007/s11274-022-03444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
11
|
Dautt-Castro M, Jijón-Moreno S, Gómez-Hernández N, del Carmen González-López M, Hernández-Hernández EJ, Rosendo-Vargas MM, Rebolledo-Prudencio OG, Casas-Flores S. New Insights on the Duality of Trichoderma as a Phytopathogen Killer and a Plant Protector Based on an Integrated Multi-omics Perspective. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Poria V, Rana A, Kumari A, Grewal J, Pranaw K, Singh S. Current Perspectives on Chitinolytic Enzymes and Their Agro-Industrial Applications. BIOLOGY 2021; 10:1319. [PMID: 34943233 PMCID: PMC8698876 DOI: 10.3390/biology10121319] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022]
Abstract
Chitinases are a large and diversified category of enzymes that break down chitin, the world's second most prevalent polymer after cellulose. GH18 is the most studied family of chitinases, even though chitinolytic enzymes come from a variety of glycosyl hydrolase (GH) families. Most of the distinct GH families, as well as the unique structural and catalytic features of various chitinolytic enzymes, have been thoroughly explored to demonstrate their use in the development of tailor-made chitinases by protein engineering. Although chitin-degrading enzymes may be found in plants and other organisms, such as arthropods, mollusks, protozoans, and nematodes, microbial chitinases are a promising and sustainable option for industrial production. Despite this, the inducible nature, low titer, high production expenses, and susceptibility to severe environments are barriers to upscaling microbial chitinase production. The goal of this study is to address all of the elements that influence microbial fermentation for chitinase production, as well as the purifying procedures for attaining high-quality yield and purity.
Collapse
Affiliation(s)
- Vikram Poria
- Department of Microbiology, Central University of Haryana, Mahendargarh 123031, India; (V.P.); (A.K.)
| | - Anuj Rana
- Department of Microbiology (COBS & H), CCS Haryana Agricultural University, Hisar 125004, India;
| | - Arti Kumari
- Department of Microbiology, Central University of Haryana, Mahendargarh 123031, India; (V.P.); (A.K.)
| | - Jasneet Grewal
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa, 102-096 Warsaw, Poland; (J.G.); (K.P.)
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa, 102-096 Warsaw, Poland; (J.G.); (K.P.)
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendargarh 123031, India; (V.P.); (A.K.)
| |
Collapse
|
13
|
Abady SM, M Ghanem K, Ghanem NB, Embaby AM. Molecular cloning, heterologous expression, and in silico sequence analysis of Enterobacter GH19 class I chitinase (chiRAM gene). Mol Biol Rep 2021; 49:951-969. [PMID: 34773550 DOI: 10.1007/s11033-021-06914-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/30/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Using in silico sequence analyses, the present study aims to clone and express the gene-encoding sequence of a GH19 chitinase from Enterobacter sp. in Escherichia coli. METHODS AND RESULTS The putative open reading frame of a GH19 chitinase from Enterobacter sp. strain EGY1 was cloned and expressed into pGEM®-T and pET-28a (+) vectors, respectively using a degenerate primer. The isolated nucleotide sequence (1821 bp, GenBank accession no.: MK533791.2) was translated to a chiRAM protein (606 amino acids, UniProt accession no.: A0A4D6J2L9). The in silico protein sequence analysis of chiRAM revealed a class I GH19 chitinase: an N-terminus signal peptide (Met1-Ala23), a catalytic domain (Val83-Glu347 and the catalytic triad Glu149, Glu171, and Ser218), a proline-rich hinge region (Pro414 -Pro450), a polycystic kidney disease protein motif (Gly 465-Ser 533), a C-terminus chitin-binding domain (Ala553- Glu593), and conserved class I motifs (NYNY and AQETGG). A three-dimensional model was constructed by LOMETS MODELLER of PDB template: 2dkvA (class I chitinase of Oryza sativa L. japonica). Recombinant chiRAM was overexpressed as inclusion bodies (IBs) (~ 72 kDa; SDS-PAGE) in 1.0 mM IPTG induced E. coli BL21 (DE3) Rosetta strain at room temperature 18 h after induction. Optimized expression yielded active chiRAM with 1.974 ± 0.0002 U/mL, on shrimp colloidal chitin (SCC), in induced E. coli BL21 (DE3) Rosetta cells growing in SB medium. LC-MS/MS identified a band of 72 kDa in the soluble fraction with a 52.3% coverage sequence exclusive to the GH19 chitinase of Enterobacter cloacae (WP_063869339.1). CONCLUSIONS Although chiRAM of Enterobacter sp. was successfully cloned and expressed in E. coli with appreciable chitinase activity, future studies should focus on minimizing IBs to facilitate chiRAM purification and characterization.
Collapse
Affiliation(s)
- Shahinaz M Abady
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, 1 Baghdad Street-Moharam Bek, Alexandria, 21568, Egypt
| | - Khaled M Ghanem
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, 1 Baghdad Street-Moharam Bek, Alexandria, 21568, Egypt
| | - Nevine B Ghanem
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, 1 Baghdad Street-Moharam Bek, Alexandria, 21568, Egypt
| | - Amira M Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, P.O.Box 832, 163 Horreya Avenue, Chatby, Alexandria, 21526, Egypt.
| |
Collapse
|
14
|
Bacterial chitinase biochemical properties, immobilization on zinc oxide (ZnO) nanoparticle and its effect on Sitophilus zeamais as a potential insecticide. World J Microbiol Biotechnol 2021; 37:173. [PMID: 34519907 DOI: 10.1007/s11274-021-03138-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
It has been planned to minimize the yield and quality impairment of the seed corn, which is strategically important in the world, by pests under storage conditions with a biological product produced with a biotechnological approach. In this context, the present study aimed to control the maize weevil Sitophilus zeamais, known as a warehouse pest, using a nanoformulation. In the study, the chitinase enzyme from Lactobacillus coryniformis was purified first using ammonium sulfate precipitation and then by using the HiTrap Capto DEAE column, and the molecular mass of the purified enzyme was determined to be ~ 33 kDa, and the optimum pH and the values as pH 6.0 and 65-75 °C, respectively. Five different doses of nanoformulation (2, 4, 6, 8 and 10 mg/L) were applied to corn grains by the spraying method with three repetitions so that the insect can ingest the formulation through feeding. The effects of the applications on the death rate and mean time of death of Sitophilus zeamais were determined. According to these findings, it was concluded that the best practice was nanoformulation with 6 mg/L, considering both the mortality rate (100%) and the average death time (2.4 days). Chitinase from L. coryniformis is a promising candidate for corn lice control and management.
Collapse
|
15
|
Farias P, Francisco R, Maccario L, Herschend J, Piedade AP, Sørensen S, Morais PV. Impact of Tellurite on the Metabolism of Paenibacillus pabuli AL109b With Flagellin Production Explaining High Reduction Capacity. Front Microbiol 2021; 12:718963. [PMID: 34557171 PMCID: PMC8453073 DOI: 10.3389/fmicb.2021.718963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
Tellurium (Te) is a metalloid with scarce and scattered abundance but with an increased interest in human activity for its uses in emerging technologies. As is seen for other metals and metalloids, the result of mining activity and improper disposal of high-tech devices will lead to niches with increased abundance of Te. This metalloid will be more available to bacteria and represent an increasing selective pressure. This environmental problem may constitute an opportunity to search for microorganisms with genetic and molecular mechanisms of microbial resistance to Te toxic anions. Organisms from Te-contaminated niches could provide tools for Te remediation and fabrication of Te-containing structures with added value. The objective of this study was to determine the ability of a high metal-resistant Paenibacillus pabuli strain ALJ109b, isolated from high metal content mining residues, to reduce tellurite ion, and to evaluate the formation of metallic tellurium by cellular reduction, isolate the protein responsible, and determine the metabolic response to tellurite during growth. P. pabuli ALJ109b demonstrated to be resistant to Te (IV) at concentrations higher than reported for its genus. It can efficiently remove soluble Te (IV) from solution, over 20% in 8 h of growth, and reduce it to elemental Te, forming monodisperse nanostructures, verified by scattering electron microscopy. Cultivation of P. pabuli ALJ109b in the presence of Te (IV) affected the general protein expression pattern, and hence the metabolism, as demonstrated by high-throughput proteomic analysis. The Te (IV)-induced metabolic shift is characterized by an activation of ROS response. Flagellin from P. pabuli ALJ109b demonstrates high Te (0) forming activity in neutral to basic conditions in a range of temperatures from 20°C to 37°C. In conclusion, the first metabolic characterization of a strain of P. pabuli response to Te (IV) reveals a highly resistant strain with a unique Te (IV) proteomic response. This strain, and its flagellin, display, all the features of potential tools for Te nanoparticle production.
Collapse
Affiliation(s)
- Pedro Farias
- Department of Life Sciences, CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Romeu Francisco
- Department of Life Sciences, CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Lorrie Maccario
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Herschend
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ana Paula Piedade
- CEMMPRE, Department Mechanical Engineering, University of Coimbra, Coimbra, Portugal
| | - Søren Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Paula V. Morais
- Department of Life Sciences, CEMMPRE, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
16
|
Recent advances in the bioprospection and applications of chitinolytic bacteria for valorization of waste chitin. Arch Microbiol 2021; 203:1953-1969. [PMID: 33710379 DOI: 10.1007/s00203-021-02234-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 10/21/2022]
Abstract
One of the most abundant natural polymers on earth, chitin is a fibrous and structural polysaccharide, composed of N-acetyl-D-glucosamine. The biopolymer is the major structural constituent of fungi, arthropods, mollusks, nematodes, and some algae. The biodegradation of chitin is largely manifested by chitinolytic enzyme secreting organisms including bacteria, insects, and plants. Among them, bacterial chitinases represent the most promising, inexpensive, and sustainable source of proteins that can be employed for industrial-scale applications. To this end, the presented review comes at a timely moment to highlight the major sources of chitinolytic bacteria. It also discusses the potential pros and cons of prospecting bacterial chitinases that can be easily manipulated through genetic engineering. Additionally, we have elaborated the recent applications of the chitin thereby branding chitinases as potential candidates for biorefinery and biomedical research for eco-friendly and sustainable management of chitin waste in the environment.
Collapse
|